scholarly journals Stent strut streamlining and thickness reduction promote endothelialization

2021 ◽  
Vol 18 (181) ◽  
pp. 20210023
Author(s):  
Duy T. Nguyen ◽  
Alexander F. Smith ◽  
Juan M. Jiménez

Stent thrombosis (ST) carries a high risk of myocardial infarction and death. Lack of endothelial coverage is an important prognostic indicator of ST after stenting. While stent strut thickness is a critical factor in ST, a mechanistic understanding of its effect is limited and the role of haemodynamics is unclear. Endothelialization was tested using a wound-healing assay and five different stent strut models ranging in height between 50 and 150 µm for circular arc (CA) and rectangular (RT) geometries and a control without struts. Under static conditions, all stent strut surfaces were completely endothelialized. Reversing pulsatile disturbed flow caused full endothelialization, except for the stent strut surfaces of the 100 and 150 µm RT geometries, while fully antegrade pulsatile undisturbed flow with a higher mean wall shear stress caused only the control and the 50 µm CA geometries to be fully endothelialized. Modest streamlining and decrease in height of the stent struts improved endothelial coverage of the peri-strut and stent strut surfaces in a haemodynamics dependent manner. This study highlights the impact of the stent strut height (thickness) and geometry (shape) on the local haemodynamics, modulating reendothelialization after stenting, an important factor in reducing the risk of stent thrombosis.

2018 ◽  
Vol 118 (02) ◽  
pp. 229-250 ◽  
Author(s):  
H. Spronk ◽  
T. Padro ◽  
J. Siland ◽  
J. Prochaska ◽  
J. Winters ◽  
...  

AbstractAtherothrombosis is a leading cause of cardiovascular mortality and long-term morbidity. Platelets and coagulation proteases, interacting with circulating cells and in different vascular beds, modify several complex pathologies including atherosclerosis. In the second Maastricht Consensus Conference on Thrombosis, this theme was addressed by diverse scientists from bench to bedside. All presentations were discussed with audience members and the results of these discussions were incorporated in the final document that presents a state-of-the-art reflection of expert opinions and consensus recommendations regarding the following five topics: 1. Risk factors, biomarkers and plaque instability: In atherothrombosis research, more focus on the contribution of specific risk factors like ectopic fat needs to be considered; definitions of atherothrombosis are important distinguishing different phases of disease, including plaque (in)stability; proteomic and metabolomics data are to be added to genetic information. 2. Circulating cells including platelets and atherothrombosis: Mechanisms of leukocyte and macrophage plasticity, migration, and transformation in murine atherosclerosis need to be considered; disease mechanism-based biomarkers need to be identified; experimental systems are needed that incorporate whole-blood flow to understand how red blood cells influence thrombus formation and stability; knowledge on platelet heterogeneity and priming conditions needs to be translated toward the in vivo situation. 3. Coagulation proteases, fibrin(ogen) and thrombus formation: The role of factor (F) XI in thrombosis including the lower margins of this factor related to safe and effective antithrombotic therapy needs to be established; FXI is a key regulator in linking platelets, thrombin generation, and inflammatory mechanisms in a renin–angiotensin dependent manner; however, the impact on thrombin-dependent PAR signaling needs further study; the fundamental mechanisms in FXIII biology and biochemistry and its impact on thrombus biophysical characteristics need to be explored; the interactions of red cells and fibrin formation and its consequences for thrombus formation and lysis need to be addressed. Platelet–fibrin interactions are pivotal determinants of clot formation and stability with potential therapeutic consequences. 4. Preventive and acute treatment of atherothrombosis and arterial embolism; novel ways and tailoring? The role of protease-activated receptor (PAR)-4 vis à vis PAR-1 as target for antithrombotic therapy merits study; ongoing trials on platelet function test-based antiplatelet therapy adjustment support development of practically feasible tests; risk scores for patients with atrial fibrillation need refinement, taking new biomarkers including coagulation into account; risk scores that consider organ system differences in bleeding may have added value; all forms of oral anticoagulant treatment require better organization, including education and emergency access; laboratory testing still needs rapidly available sensitive tests with short turnaround time. 5. Pleiotropy of coagulation proteases, thrombus resolution and ischaemia–reperfusion: Biobanks specifically for thrombus storage and analysis are needed; further studies on novel modified activated protein C–based agents are required including its cytoprotective properties; new avenues for optimizing treatment of patients with ischaemic stroke are needed, also including novel agents that modify fibrinolytic activity (aimed at plasminogen activator inhibitor-1 and thrombin activatable fibrinolysis inhibitor.


2018 ◽  
Vol 19 (12) ◽  
pp. 3711 ◽  
Author(s):  
Ovidiu Balacescu ◽  
Daniel Sur ◽  
Calin Cainap ◽  
Simona Visan ◽  
Daniel Cruceriu ◽  
...  

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies with a high incidence and mortality rate. An essential challenge in colorectal cancer management is to identify new prognostic factors that could better estimate the evolution and treatment responses of this disease. Considering their role in cancer development, progression and metastasis, miRNAs have become an important class of molecules suitable for cancer biomarkers discovery. We performed a systematic search of studies investigating the role of miRNAs in colorectal progression and liver metastasis published until October 2018. In this review, we present up-to-date information regarding the specific microRNAs involved in CRC development, considering their roles in alteration of Wnt/βcatenin, EGFR, TGFβ and TP53 signaling pathways. We also emphasize the role of miRNAs in controlling the epithelial–mesenchymal transition of CRC cells, a process responsible for liver metastasis in a circulating tumor cell-dependent manner. Furthermore, we discuss the role of miRNAs transported by CRC-derived exosomes in mediating liver metastases, by preparing the secondary pre-metastatic niche and in inducing liver carcinogenesis in a Dicer-dependent manner.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Katarzyna Szadujkis-Szadurska ◽  
Bartosz Malinowski ◽  
Małgorzata Piotrowska ◽  
Grzegorz Grześk ◽  
Michał Wiciński ◽  
...  

Aim of the Study.The purpose of this study was to investigate the impact of ischemia and reperfusion on the resistance of arteries to AVP (arginine vasopressin), with a particular emphasis on the role of smooth muscle cells in the action of vasopressin receptors and the role of the cGMP-associated signalling pathway.Materials and Methods.Experiment was performed on the perfunded tail arteries from male Wistar rats. The constriction triggered by AVP after 30 minutes of ischemia and 30 and 90 minutes of reperfusion was analysed. Analogous experiments were also carried out in the presence of 8Br-cGMP.Results.Ischemia reduces and reperfusion increases in a time-dependent manner the arterial reaction to AVP. The presence of 8Br-cGMP causes a significant decrease of arterial reactivity under study conditions.Conclusions.Ischemia and reperfusion modulate arterial contraction triggered by AVP. The effect of 8Br-cGMP on reactions, induced by AVP after ischemia and reperfusion, indicates that signalling pathway associated with nitric oxide (NO) and cGMP regulates the tension of the vascular smooth muscle cells.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Caroline Kumsta ◽  
Jessica T. Chang ◽  
Reina Lee ◽  
Ee Phie Tan ◽  
Yongzhi Yang ◽  
...  

AbstractAutophagy can degrade cargos with the help of selective autophagy receptors such as p62/SQSTM1, which facilitates the degradation of ubiquitinated cargo. While the process of autophagy has been linked to aging, the impact of selective autophagy in lifespan regulation remains unclear. We have recently shown in Caenorhabditis elegans that transcript levels of sqst-1/p62 increase upon a hormetic heat shock, suggesting a role of SQST-1/p62 in stress response and aging. Here, we find that sqst-1/p62 is required for hormetic benefits of heat shock, including longevity, improved neuronal proteostasis, and autophagy induction. Furthermore, overexpression of SQST-1/p62 is sufficient to induce autophagy in distinct tissues, extend lifespan, and improve the fitness of mutants with defects in proteostasis in an autophagy-dependent manner. Collectively, these findings illustrate that increased expression of a selective autophagy receptor is sufficient to induce autophagy, enhance proteostasis and extend longevity, and demonstrate an important role for sqst-1/p62 in proteotoxic stress responses.


2006 ◽  
Vol 291 (4) ◽  
pp. C668-C677 ◽  
Author(s):  
Karen Lawler ◽  
Eilis Foran ◽  
Gerald O'Sullivan ◽  
Aideen Long ◽  
Dermot Kenny

To metastasize, tumor cells must adopt different morphological responses to resist shear forces encountered in circulating blood and invade through basement membranes. The Rho and Ras GTPases play a critical role in regulating this dynamic behavior. Recently, we demonstrated shear-induced activation of adherent esophageal metastatic cells, characterized by formation of dynamic membrane blebs. Although membrane blebbing has only recently been characterized as a rounded mode of cellular invasion promoted through Rho kinase (ROCK), the role of shear forces in modulating membrane blebbing activity is unknown. To further characterize membrane blebbing in esophageal metastatic cells (OC-1 cell line), we investigated the role of shear in cytoskeletal remodeling and signaling through ROCK and Ras. Our results show that actin and tubulin colocalize to the cortical ring of the OC-1 cell under static conditions. However, under shear, actin acquires a punctuate distribution and tubulin localizes to the leading edge of the OC-1 cell. We show for the first time that dynamic bleb formation is induced by shear alone independent of integrin-mediated adhesion ( P < 0.001, compared with OC-1 cells). Y-27632, a specific inhibitor of ROCK, causes a significant reduction in shear-induced bleb formation and inhibits integrin αvβ3-Ras colocalization at the leading edge of the cell. Direct measurement of Ras activation shows that the level of GTP-bound Ras is elevated in sheared OC-1 cells and that the shear-induced increase in Ras activity is inhibited by Y-27632. Finally, we show that shear stress significantly increases OC-1 cell invasion ( P < 0.007), an effect negated by the presence of Y-27632. Together our findings suggest a novel physiological role for ROCK and Ras in metastatic cell behavior.


Author(s):  
Ovidiu Balacescu ◽  
Daniel Sur ◽  
Calin Cainap ◽  
Simona Visan ◽  
Daniel Cruceriu ◽  
...  

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies with a high incidence and mortality. An essential challenge in colorectal cancer management is to identify new prognostic factors that could better estimate the evolution and treatment responses of this disease. Considering their role in cancer development, progression and metastasis, miRNAs have become an important class of molecules suitable for cancer biomarkers discovery. We performed a systematic search of studies investigating the role of miRNAs in colorectal progression and liver metastasis, published until October 2018. In this review, we present up-to-date information regarding the specific microRNAs involved in CRC development, considering their roles in alteration of Wnt/&beta;catenin, EGFR, TGF&beta; and TP53 signaling pathways. We also emphasize the role of miRNAs in controlling the epithelial-mesenchymal transition of CRC cells, a process responsible for liver metastasis in a circulating tumor cell-dependent manner. Furthermore, we discuss the role of miRNAs transported by CRC-derived exosomes in mediating liver metastases, by preparing the secondary pre-metastatic niche and in inducing liver carcinogenesis in a Dicer-dependent manner.&nbsp;&nbsp;


2021 ◽  
Vol 135 (14) ◽  
pp. 1767-1772
Author(s):  
George W. Booz ◽  
Gaelle P. Massoud ◽  
Raffaele Altara ◽  
Fouad A. Zouein

Abstract Fetal exposure to an unfavorable intrauterine environment programs an individual to have a greater susceptibility later in life to non-communicable diseases, such as coronary heart disease, but the molecular processes are poorly understood. An article in Clinical Science recently reported novel details on the effects of maternal nutrient reduction (MNR) on fetal heart development using a primate model that is about 94% genetically similar to humans and is also mostly monotocous. MNR adversely impacted fetal left ventricular (LV) mitochondria in a sex-dependent fashion with a greater effect on male fetuses, although mitochondrial transcripts increased more so in females. Increased expression for several respiratory chain and adenosine triphosphate (ATP) synthase proteins were observed. However, fetal LV mitochondrial complex I and complex II/III activities were significantly decreased, likely contributing to a 73% decreased LV ATP content and increased LV lipid peroxidation. Moreover, MNR fetal LV mitochondria showed sparse and disarranged cristae. This study indicates that mitochondria are targets of the remodeling and imprinting processes in a sex-dependent manner. Mitochondrial ROS production and inadequate energy production add another layer of complexity. Altogether these observations raise the possibility that dysfunctional mitochondria in the fetus may contribute in turn to epigenetic memory of in utero stress in the adult. The role of mitoepigenetics and involvement of mitochondrial and genomic non-coding RNAs in mitochondrial functions and nuclei–mitochondria crosstalk with in utero stress awaits further investigation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2167-2167
Author(s):  
Marianna Gyenes ◽  
Volker R. Stoldt ◽  
Khon C. Huynh ◽  
Rüdiger E. Scharf

Abstract Abstract 2167 Objectives: Shear stress can activate platelets resulting in subsequent platelet aggregation. The so-called “shear-induced platelet aggregation” (SIPA) contributes to various vascular diseases (Speich et al., Am J Physiol Cell Physiol 2008). Several signaling pathways were proposed to be involved in this process, e.g., αIIbβ3-mediated signaling (Feng et al., Am J Physiol Cell Physiol 2006). We investigated the impact of shear stress on the αIIbβ3–ligand interaction in human platelets adherent onto fibrinogen. Platelets on immobilized fibrinogen were exposed to various shear rates and signaling of Src and FAK tyrosine kinases, both essential in the integrin downstream signaling pathways, were examined. Specifically, we analyzed the role of αIIbβ3 in shear-induced platelet signaling (i) by comparing the Src Y418 and FAK Y397 phosphorylation activities between platelets on immobilized fibrinogen and platelets on BSA matrix in response to shear stress, and (ii) by performing experiments in the presence of the αIIbβ3 antagonist abciximab. Methods: Human washed platelets were incubated on immobilized fibrinogen 100 μg/ml or 1% BSA either under static conditions or exposed to shear rates of 500 s−1 or 5000 s−1, respectively. Specific phosphorylation of Src (pY418) and FAK (pY397) was determined by Western blot and quantified densitometrically. Experiments under flow conditions were performed in a cone-plate viscometer. Results: Both Src and FAK exhibited phosphorylation under static conditions on immobilized fibrinogen after 2 min of adhesion. A shear rates of 500 s−1 did not increase the phosphorylation activities. By contrast, high shear rates (5000 s−1) significantly enhanced both Src and FAK phosphorylations in fibrinogen-adherent platelets (3-fold increase each, p<0.05). In the absence of immobilized fibrinogen, platelets incubated with BSA matrix did not show any Src activation under static conditions and only a very low Y418 phosphorylation activity in response to a shear rate of 500 s−1. A shear rate of 5000 s−1 considerably induced Src pY418 activity compared to platelets exposed to physiological shear stress (10-fold increase, p< 0.01). In response to shear rates of 500 s−1 or 5000 s−1, we detected a significantly higher Src activation in platelets adherent onto fibrinogen (500 s−1: 10-fold higher, p<0.01; 5000 s−1: 2-fold higher, p<0.05) than in platelets incubated over a BSA matrix indicating a ligand-dependent signaling. When platelets over BSA were exposed to a shear rate of 5000 s−1, FAK also exhibited a significant elevation of pY397 activity (9-fold increase, p<0.05). By contrast to Src, in platelets exposed to a shear rate of 500 s−1 or 5000 s−1, we observed approximately equal FAK pY397 activation, independent of the presence or absence of immobilized fibrinogen. In platelets incubated for 10 min on a fibrinogen matrix under static conditions, we did not detect any change in the Src activation compared to 2 min incubation. The activity of FAK pY397, however, was time-dependent and showed a 3-fold higher phosphorylation extent after 10 min than after 2 min adhesion (p<0.05). In response to a shear rate of 500 s−1 both Src Y418 and FAK Y397 phosphorylations exhibited a considerable time-dependent enhancement (comparing the phosphorylation activities after incubation for 2 or 10 min). This enhancement could be seen both in platelets adherent onto fibrinogen and in platelets over BSA (3 to 6-fold increase, p<0.05). In platelets exposed to a shear rate of 5000 s−1 for 10 min, the Src and FAK phosphorylation activities were similar to platelets after 2 min. Abciximab inhibited the Src and FAK signaling in platelets exposed to 5000 s−1 on immobilized fibrinogen. The same inhibition was seen in platelets exposed to 5000 s−1 over BSA (p<0.05). Conclusions: Exposure of platelets to high shear rates induces a significant increase of both Src and FAK signaling compared to platelets under static conditions. Whereas Src activation remains predominantly ligand-dependent in fibrinogen-adherent platelets even under shear stress, FAK signaling appears to be shear-induced. The finding that, abciximab inhibits the activation of both Src and FAK in the absence of fibrinogen, emphasizes the role of integrin αIIβ3 in the shear-induced platelet signaling. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Logan J Massman ◽  
Michael Pereckas ◽  
Nathan T Zwagerman ◽  
Stephanie Olivier-Van Stichelen

Pituitary adenomas have a staggering 16.7% lifetime prevalence and can be devastating in many patients due to profound endocrine and neurologic dysfunction. To date, no clear genomic or epigenomic markers correlates with their onset or severity. Herein, we investigate the impact of the O-GlcNAc post-translational modification in their etiology. Found in over 5000 human proteins to date, O-GlcNAcylation dynamically regulates proteins in critical signaling pathways, and its deregulation is involved in cancers progression and endocrine diseases such as diabetes. In this study, we demonstrate that O-GlcNAcylation enzymes were upregulated, particularly in aggressive ACTH-secreting tumors, suggesting a role for O-GlcNAcylation in pituitary adenoma etiology. In addition to the demonstration that O-GlcNAcylation was essential for their proliferation, we show that the endocrine function of pituitary adenoma is also dependent on O-GlcNAcylation. In corticotropic tumors, hyper-secretion of the proopiomelanocortin (POMC)-derived hormone ACTH leads to Cushing disease, materialized by severe endocrine disruption and increased mortality. We demonstrate that Pomc mRNA is stabilized in an O-GlcNAc-dependent manner in response to corticotropic-stimulating hormone (CRH). By impacting Pomc mRNA splicing and stability, O-GlcNAcylation contributes to this new mechanism of fast hormonal response in corticotropes. Thus, this study stresses the essential role of O-GlcNAcylation in ACTH-secreting adenomas pathophysiology, including cellular proliferation and hypersecretion.


Author(s):  
Hamid Behzad Nia ◽  
◽  
Amin Naseri ◽  
Mohammadreza Emamhadi ◽  
Shervin Ghadarjani ◽  
...  

Introduction: Epilepsy is one of the most common neurological disorders. Though there are effective medications available for treatment of epilepsy, the use of most drugs is associated with many side effects and drug interactions. Stachys lavandulifolia (SL) used in Iranian traditional medicine show anti-anxiety and sedative actions. The objective of the current study was to evaluate the anticonvulsant effect of hydroalcoholic extract of SL on the pentylenetetrazole (PTZ)-induced seizure in male mice and the role of benzodiazepine and opioid receptors. Methods: This study was conducted on 100 male mice randomly categorized into 10 groups: Normal Saline, Diazepam groups (0.025 and 0.1 mg/kg), SL extract groups (50, 100 and 200 mg/kg), Diazepam 0.025 mg/kg + SL extract 50mg/kg and three groups that pre-treated with NS, Flumazenil or Naloxone, 5 min before injection of 200 mg/kg extract. After 30 min, PTZ (80 mg/kg) was injected to animals and seizure indices were evaluated. Results: The SL extract attenuated the PTZ-induced seizures in a dose dependent manner and pre-treatment with flumazenil reversed this effect of SL extract but pre-treatment with naloxone could not reverse this effect, because seizure indices on naloxone pretreated group was still lower than normal saline group. Combination of ineffective dose of diazepam and SL extract decrease PTZ-induced seizures. Discussion: The results of our study showed the anticonvulsant properties of hydroalcoholic extract of SL. These effects might be due to the impact of the components of this extract on the central benzodiazepine system.


Sign in / Sign up

Export Citation Format

Share Document