scholarly journals High-performance resistive humidity sensor based on Ag nanoparticles decorated with graphene quantum dots

2021 ◽  
Vol 8 (7) ◽  
pp. 210407
Author(s):  
Gun Chaloeipote ◽  
Jaruwan Samarnwong ◽  
Pranlekha Traiwatcharanon ◽  
Teerakiat Kerdcharoen ◽  
Chatchawal Wongchoosuk

In this work, we present a low-cost, fast and simple fabrication of resistive-type humidity sensors based on the graphene quantum dots (GQDs) and silver nanoparticles (AgNPs) nanocomposites. The GQDs and AgNPs were synthesized by hydrothermal method and green reducing agent route, respectively. UV–Vis spectrophotometer, X-ray photoelectron spectroscopy and field-emission transmission electron microscopy were used to characterize quality, chemical bonding states and morphology of the nanocomposite materials and confirm the successful formation of core/shell-like AgNPs/GQDs structure. According to sensing humidity results, the ratio of GQDs/AgNPs 1 : 1 nanocomposite exhibits the best humidity response of 98.14% with exponential relation in the humidity range of 25–95% relative humidity at room temperature as well as faster response/recovery times than commercial one at the same condition. The sensing mechanism of the high-performance GQDs/AgNPs humidity sensor is proposed via Schottky junction formation and intrinsic synergistic effects of GQDs and AgNPs.

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 806
Author(s):  
Ning Wang ◽  
Wenhao Tian ◽  
Haosheng Zhang ◽  
Xiaodan Yu ◽  
Xiaolei Yin ◽  
...  

An easily fabricated Fabry-Perot optical fiber humidity sensor with high performance was presented by filling Graphene Quantum Dots (GQDs) into the Fabry-Perot resonator, which consists of two common single mode optical fibers. The relative humidity sensing performance was experimentally investigated by an interference spectrum drift between 11 %RH to 85 %RH. 0.567 nm/%RH sensitivity and 0.99917 linear correlation were found in experiments that showed high sensitivity, good and wide-range linear responding. Meanwhile, its good responding repeatability was demonstrated by two circle tests with increasing and decreasing relative humidity. For investigating the measurement influence caused by a temperature jitter, the temperature responding was experimentally investigated, which showed its linear responding with 0.033 nm/°C sensitivity. The results demonstrate the humidity sensitivity is greatly higher than the temperature sensitivity. The wavelength shift influence is 0.0198 nm with 0.6 °C max temperature jitter in the experiment, which can be ignored in humidity experiments. The fast-dynamic responses at typical humidity were demonstrated in experiments, with 5.5 s responding time and 8.5 s recovering time. The sensors with different cavity lengths were also investigated for their humidity response. All sensors gave good linear responding and high sensitivity. In addition, the relation curve between cavity length and response sensitivity also had good linearity. The combination of GQDs and single mode optical fibers showed easy fabrication and good performance for an optical fiber relative humidity sensor.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1512
Author(s):  
Yuhan Liu ◽  
Meiling Zhang ◽  
Jinjun Cheng ◽  
Yue Zhang ◽  
Hui Kong ◽  
...  

Glycyrrhizae Radix et Rhizoma (GRR) is one of the commonly used traditional Chinese medicines in clinical practice, which has been applied to treat digestive system diseases for hundreds of years. GRR is preferred for anti-gastric ulcer, however, the main active compounds are still unknown. In this study, GRR was used as precursor to synthesize carbon dots (CDs) by a environment-friendly one-step pyrolysis process. GRR-CDs were characterized by using transmission electron microscopy, high-resolution TEM, fourier transform infrared, ultraviolet-visible and fluorescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and high-performance liquid chromatography. In addition, cellular toxicity of GRR-CDs was studied by using CCK-8 in RAW264.7 cells, and the anti-gastric ulcer activity was evaluated and confirmed using mice model of acute alcoholic gastric ulcer. The experiment confirmed that GRR-CDs were the spherical structure with a large number of active groups on the surface and their particle size ranged from 2 to 10 nm. GRR-CDs had no toxicity to RAW264.7 cells at concentration of 19.5 to 5000 μg/mL and could reduce the oxidative damage of gastric mucosa and tissues caused by alcohol, as demonstrated by restoring expression of malondialdehyde, superoxide dismutase and nitric oxide in serum and tissue of mice. The results indicated the explicit anti-ulcer activity of GRR-CDs, which provided a new insights for the research on effective material basis of GRR.


Author(s):  
Shikai Yan ◽  
Sheng Tang ◽  
Manman Luo ◽  
Lu Xue ◽  
Shilin Liu ◽  
...  

CsPbBr3-based photodetectors (PDs) have aroused enormous attention owing to their low-cost solution processing, outstanding optoelectronic properties, and remarkable stability. However, their performances remain a big challenge to meet the requirement...


2021 ◽  
pp. 100853
Author(s):  
G. Nagaraj ◽  
Mustafa K.A. Mohammed ◽  
Masoud Shekargoftar ◽  
P. Sasikumar ◽  
P. Sakthivel ◽  
...  

2021 ◽  
Author(s):  
Md. Farhan Naseh ◽  
Neelam Singh ◽  
Jamilur R. Ansari ◽  
Ashavani Kumar ◽  
Tapan Sarkar ◽  
...  

Abstract Here, we report functionalized graphene quantum dots (GQDs) for the optical detection of arsenic at room temperature. GQDs with the fluorescence of three fundamental colors (red, green, and blue) were synthesized and functionally capped with L-cysteine (L-cys) to impart selectively towards As (III) by exploiting the affinity of L-cys towards arsenite. The optical characterization of GQDs was carried out using UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy, and fluorescence spectrometry and the structural characterizations were performed using transmission electron microscopy. The fluorescence results showed instantaneous quenching in intensity when the GQDs came in contact with As (III) for all test concentrations over a range from 0.025 ppb to 25 ppb, which covers the permissible limit of arsenic in drinking water. The experimental results suggested excellent sensitivity and selectivity towards As (III).


2020 ◽  
Vol 49 (9) ◽  
pp. 906003-906003
Author(s):  
王宁 Ning WANG ◽  
田文昊 Wen-hao TIAN ◽  
张昊生 Hao-sheng ZHANG ◽  
于晓丹 Xiao-dan YU ◽  
尹晓蕾 Xiao-lei YIN ◽  
...  

Author(s):  
Zhou J ◽  
◽  
Dong Y ◽  
Ma Y ◽  
Zhang T ◽  
...  

Graphene Quantum Dots (GQDs) have been prepared by oxidationhydrothermal reaction, using ball-milling graphite as the starting materials. The prepared GQDs are endowed with excellent luminescence properties, with the optimum emission of 320nm. Blue photoluminescent emitted from the GQDs under ultraviolet light. The GQDs are ~3nm in width and 0.5~2 nm in thickness, revealed by high-resolution transmission electron microscopy and atomic force microscopy. In addition, Fourier transform infrared spectrum evidences the existence of carbonyl and hydroxyl groups, meaning GQDs can be dispersed in water easily and used in cellar imaging, and blue area inside L929 cells were clearly observed under the fluorescence microscope. Both low price of raw material and simple prepared method contribute to the high quality GQDs widespread application in future.


2020 ◽  
pp. 127602 ◽  
Author(s):  
Yuqing Lin ◽  
Qin Shen ◽  
Yuki Kawabata ◽  
Jumpei Segawa ◽  
Xingzhong Cao ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1034 ◽  
Author(s):  
Xi Rao ◽  
Michaël Tatoulian ◽  
Cédric Guyon ◽  
Stephanie Ognier ◽  
Chenglin Chu ◽  
...  

Immobilization of gold nanoparticles (AuNPs) on the surface of zeolite has received a great interest due to Au@zeolite’s unique characteristics and high performance for catalysis. In this work we studied the grafting of two different functional molecules; one having an amine group (3-aminopropyl)triethoxysilane (APTES) and the second having a thiol group (3-mercaptopropyl)trimethoxysilane (MPTES) on the surface of zeolite using the same wet chemistry method. The modified zeolite surfaces were characterized using zeta potential measurements; diffuse reflectance infrared fourier transform (DRIFT) and X-ray photoelectron spectroscopy (XPS). The results confirmed a successful deposition of both functional groups at the topmost surface of the zeolite. Furthermore; transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectroscopy and XPS results clearly evidenced that APTES provided a better AuNPs immobilization than MPTES as a result of; (1) less active functions obtained after MPTES deposition, and (2) the better attaching ability of thiol to the gold surface.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Qianchun Zhang ◽  
Xiaolan Zhang ◽  
Linchun Bao ◽  
Yun Wu ◽  
Li Jiang ◽  
...  

Ginkgo leaves were used as precursors for the hydrothermal synthesis of carbon quantum dots (CQDs), which were subsequently characterized by transmission electron microscopy as well as Fourier-transform infrared, X-ray powder diffraction, and X-ray photoelectron spectroscopy. The prepared CQDs exhibited a fluorescence quantum yield of 11% and superior water solubility and fluorescence stability, as well as low cytotoxicities and excellent biocompatibilities with A549 and HeLa cells; these CQDs were also used to bioimage HeLa cells. Moreover, owing to the experimental observation that Hg2+ quenches the fluorescence of the CQDs in a specific and sensitive manner, we developed a method for the detection of Hg2+ using this fluorescence sensor. The sensor exhibited a linear range for Hg2+ of 0.50–20 μM, with an excellent coefficient of determination (R2 = 0.9966) and limit of detection (12.4 nM). In practice, the proposed method was shown to be highly selective and sensitive for the monitoring of Hg2+ in lake water and serum samples.


Sign in / Sign up

Export Citation Format

Share Document