scholarly journals Fighting experience alters brain androgen receptor expression dependent on testosterone status

2014 ◽  
Vol 281 (1796) ◽  
pp. 20141532 ◽  
Author(s):  
Cheng-Yu Li ◽  
Ryan L. Earley ◽  
Shu-Ping Huang ◽  
Yuying Hsu

Contest decisions are influenced by the outcomes of recent fights (winner–loser effects). Steroid hormones and serotonin are closely associated with aggression and therefore probably also play important roles in mediating winner–loser effects. In mangrove rivulus fish, Kryptolebias marmoratus , individuals with higher testosterone (T), 11-ketotestosterone and cortisol levels are more capable of winning, but titres of these hormones do not directly mediate winner–loser effects. In this study, we investigated the effects of winning/losing experiences on brain expression levels of the receptor genes for androgen (AR), oestrogen α/β (ER α/β ), glucocorticoid (GR) and serotonin (5-HT 1A R). The effect of contest experience on AR gene expression depended on T levels: repeated losses decreased, whereas repeated wins increased AR gene expression in individuals with low T but not in individuals with medium or high T levels. These results lend strong support for AR being involved in mediating winner–loser effects, which, in previous studies, were more detectable in individuals with lower T. Furthermore, the expression levels of ER α/β , 5-HT 1A R and GR genes were higher in individuals that initiated contests against larger opponents than in those that did not. Overall, contest experience, underlying endocrine state and hormone and serotonin receptor expression patterns interacted to modulate contest decisions jointly.

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Hitoshi Iuchi ◽  
Michiaki Hamada

Abstract Time-course experiments using parallel sequencers have the potential to uncover gradual changes in cells over time that cannot be observed in a two-point comparison. An essential step in time-series data analysis is the identification of temporal differentially expressed genes (TEGs) under two conditions (e.g. control versus case). Model-based approaches, which are typical TEG detection methods, often set one parameter (e.g. degree or degree of freedom) for one dataset. This approach risks modeling of linearly increasing genes with higher-order functions, or fitting of cyclic gene expression with linear functions, thereby leading to false positives/negatives. Here, we present a Jonckheere–Terpstra–Kendall (JTK)-based non-parametric algorithm for TEG detection. Benchmarks, using simulation data, show that the JTK-based approach outperforms existing methods, especially in long time-series experiments. Additionally, application of JTK in the analysis of time-series RNA-seq data from seven tissue types, across developmental stages in mouse and rat, suggested that the wave pattern contributes to the TEG identification of JTK, not the difference in expression levels. This result suggests that JTK is a suitable algorithm when focusing on expression patterns over time rather than expression levels, such as comparisons between different species. These results show that JTK is an excellent candidate for TEG detection.


2021 ◽  
Author(s):  
Jianyuan Li ◽  
Hui Shi ◽  
Xiaoyu Liu ◽  
Yanwei Wang ◽  
Haiyan Wang ◽  
...  

Abstract I. Background: Peroxiredoxin 6 (Prdx6) is widely expressed in mammalian tissues. Our previous study demonstrated that Prdx6 was expressed in human epididymis and spermatozoa, and the protective role of Prdx6 in human spermatozoa was also reported. In this study, we demonstrate the potential role and mechanism of Prdx6 in human epididymis epithelial cells (HEECs).II. Methods and Results: Western blotting was used to measure expression levels of key proteins in the JAK / STAT signaling pathway. Digital gene expression analysis (DGE) was used to identify gene expression patterns in control HECs and in HECs after Prdx6-RNA interference (P6-RNAi). The DGE analysis identified 589 up-regulated and 314 down-regulated genes (including Prdx6) in Prdx6-RNAi (P6-RNAi) HEECs. Thirteen significantly different pathways were identified between the two groups, with the majority different expressed genes belonging to the CCL, CXCL, IL, and IFIT families. In particular, the expression levels of IL6, IL6ST, and eighteen IFN related genes were significantly increased in the condition of the down-regulated expression of Prdx6. Compared to control HEECs, the expression levels of JAK1, STAT1, phosphorylated JAK1 and STAT1 were significantly increased, while the expression levels of SOCS3 was significantly decreased in P6-RNAi HEECs. The Malondialdehyde (MDA) level and total antioxidant capacity in P6-RNAi HEECs were significantly increased and decreased compared to that of control, respectively. III. Conclusions: We speculated that knockdown of Prdx6 resulted in higher levels of ROS in HEECs, which in turn, activated the JAK1 / STAT1 signaling pathway induced by IL-6 receptor and IFN.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1204-1204
Author(s):  
Lykke Christina Grubach ◽  
Mike Zangenberg ◽  
Hans Beier Ommen ◽  
Anni Aggerholm ◽  
Peter Hokland

Abstract INTRODUCTION: Acute myeloid leukemia (AML) is a heterogeneous disease with varying survival rates depending mostly upon the molecular phenotype of the single leukemic clone. The most powerful predictor for the outcome of the individual patient is the cytogenetic profile at the time of diagnosis, dividing the patients into good, intermediate and adverse prognostic group. However, given that 40–60 percent of patients exhibits a normal karyotype and are assigned to an intermediate prognostic group, identification of biologic parameters, which either alone or in combination, predict disease outcome more precisely are needed. We have previously performed a gene expression profiling study (Grubach et al, Eur J. Hematol. 2008 Apr 10. [Epub ahead of print]) on a series of Polycomb, Hox and Meis genes expressed in hematopoietic cells. AIM: Based on the finding that HOXA4 could be used as a predictor for outcome in AML patients with a normal karyotype, we hypothesized that combining the gene expression of the HOXA4 gene and co-factor MEIS1 might unravel a leukemogenic impact in other cytogenetic prognostic groups (Grimwade et al. Blood. 1998 Oct 1;92(7):2322–33). In addition, given that epigenetic events might contribute to the regulation of these genes, we determined whether promoter hypermethylation of CpG islands in the promoter regions were of relevance to the expression levels of HOXA4 and MEIS1. MATERIALS & METHODS: Diagnosis samples from 248 AML patients were analyzed by RQ-PCR for expression levels of HOXA4 and MEIS1. 157 of these patients were further analyzed for promoter hypermethylation of the same genes by bisulphite treatment of DNA followed by methylation-specific melting curve analysis (MS-MCA). RESULTS: When combining the gene expression levels of HOXA4 with MEIS1 into the three main groups (low HOXA4/low MEIS1, low HOXA4/high MEIS1 and normal-high HOXA4/high MEIS1; (the latter pooled to enable statistical calculations)), clear differences in overall survival were found (Fig. 1). Thus, within the group of patients exhibiting low levels of HOXA4 transcript, those with a high expression of MEIS1 had a significantly worse outcome than those having low MEIS1 expression (p=0.025). Importantly, in a multiparameter regression analysis, the prediction was independent of the cytogenetic grouping, of mutations in NPM1 and FLT3 genes, WBC and age. Given the efficacy of demethylating therapy, we also considered the mechanism of HOXA4 and MEIS1 gene regulation. Thus, when promoter methylation of HOXA4 and MEIS1 in 157 patients was investigated, we found that 15 % of the patients had hypermethylation of the promoter region of MEIS1 and 77% of the patients showed hypermethylation of HOXA4. Importantly, a significant correlation for both of the genes between the expression level and methylation state was observed (MEIS1, p=0.001 and HOXA4, p=0.007). CONCLUSION: The altered expression levels of HOXA4 and MEIS1 in AML reflect, at least partly, an epigenetic regulation by virtue of promoter hypermethylation. The level of transcripts of HOXA4 and MEIS1 seem to contribute to the leukemogenesis in AML and can serve as independent prognostic variables regardless of their cytogenetic and molecular background. Fig. 1. Overall survival of AML patients-stratified by cytogenetics, mutations in NPM1 and FLT3, WBC and age. By combination of HOXA4 and Meis1 expression a significant better survival is linked to those with a low HOXA4/low MEIS1 compared to those with a low HOXA4/high MEIS1 expression. Fig. 1. Overall survival of AML patients-stratified by cytogenetics, mutations in NPM1 and FLT3, WBC and age. By combination of HOXA4 and Meis1 expression a significant better survival is linked to those with a low HOXA4/low MEIS1 compared to those with a low HOXA4/high MEIS1 expression.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3020-3020
Author(s):  
Alicia Báez ◽  
Beatriz Martin-Antonio ◽  
Concepción Prats-Martín ◽  
Isabel Álvarez-Laderas ◽  
María Victoria Barbado ◽  
...  

Abstract Abstract 3020 Introduction: Hematopoietic progenitors cells (HPCs) used in allogenic transplantation (allo-HSCT) may have different biological properties depending on their source of origin: mobilized peripheral blood (PB), bone marrow (BM) or umbilical cord (UC), which may be reflected in miRNAs or gene expression. The identification of different patterns of expression could have clinical implications. The aim of this study was to determine differences in miRNAs and gene expression patterns in the different sources of HPCs used in allo-HSCT. Materials and Method: CD34 + cells were isolated by immunomagnetic separation and sorting from 5 healthy donors per type of source: UC, BM and PB mobilized with G-CSF. A pool of samples from PB not mobilized was used as reference group. We analyzed the expression of 375 miRNAs using TaqMan MicroRNA Arrays Human v2.0 (Applied Biosystems), and gene expression using Whole Human Genome Oligo microarray kit 4×44K (Agilent). The expression levels of genes and miRNAs were obtained by the 2-ΔΔCTmethod. From expression data hierarchical clustering was performed using the Euclidean distance. To identify genes and miRNAs differentially expressed between the different sources of HPCs statistical Kruskal Wallis test was applied. All analysis were performed using the Multiexperiment Viewer 4.7.1. The function of the miRNAs and genes of interest was determined from the various databases available online (TAM database, Gene Ontology and TargetScan Human). Results: Forty-two miRNAs differentially expressed between the different sources were identified. As compared to BM or UC, in mobilized PB most miRNAs were overexpressed, including the miRNA family of miR515, which is characteristic of embryonic stem cells. On the other hand, 47 genes differentially expressed between the different sources were identified. Interestingly, a similar pattern of expression was observed between movilized PB and UC as compared to BM. Interestingly, 13 of these genes are targets of the miRNAs also identified in this study, which suggests that their expression might be regulated by these miRNAs. Conclusion: There are significant differences in miRNAs and gene expression levels between the different sources of HPCs Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 31 (4_suppl) ◽  
pp. 383-383
Author(s):  
Martin K. H. Maus ◽  
Craig Stephens ◽  
Stephanie H. Astrow ◽  
Peter Philipp Grimminger ◽  
Dongyun Yang ◽  
...  

383 Background: Gene expression levels of ERCC1, TS, EGFR and VEGFR2 may have predictive value for the personalized use of standard chemotherapeutics as well as agents targeting the EGFR and VEGF pathways and the efficacy of EGFR directed monoclonal antibodies like panitumumab and cetuximab has been confirmed to be dependent on wt KRAS and wt BRAF in patients with advanced colorectal cancer. We investigated the correlations between KRAS/BRAF mutational status and the mRNA expression levels of these genes. Methods: Formalin-fixed paraffin-embedded tumor specimens from 600 patients with advanced colorectal adenocarcinoma were microdissected and DNA and RNA was extracted. Specifically designed primers and probes were used to detect 7 different base substitutions in codon 12 and 13 of KRAS, V600E mutations in BRAF and the expression levels of ERCC1, TS, EGFR and VEGFR2 by RT-PCR. Results: Mt KRAS tumors had significantly lower TS and EGFR gene expression levels compared with wt KRAS (p<0,001), whereas mt BRAF tumors showed significantly increased TS and EGFR mRNA levels compared to wt BRAF (p<0,001). Mt BRAF tumors showed significantly higher mRNA levels than mt KRAS tumors (p<0,001). ERCC1 and VEGFR2 mRNA levels were significantly down-regulated in mt KRAS specimen (p<0,001), but showed no significant correlation with BRAF mutational status. Conclusions: KRAS and BRAF mutations are associated with opposite mRNA expression levels for TS and EGFR. Recently, resistance to BRAF inhibition in mt BRAF colorectal tumors has been shown in preclinical models to be associated with up-regulation of EGFR. Our data suggests that BRAF mutants are associated with high EGFR levels at the time of diagnosis, and not necessarily part of an acquired mechanism of resistance. Significantly lower mRNA expression levels of VEGFR2 in mt KRAS tumors may explain lower response to angiogenesis inhibition seen in the TML study.


Author(s):  
Jing Yang ◽  
Nan Su ◽  
Xiaolan Du ◽  
Lin Chen

AbstractBone displays suppressed osteogenesis in inflammatory diseases such as sepsis and rheumatoid arthritis. However, the underlying mechanisms have not yet been clearly explained. To identify the gene expression patterns in the bone, we performed Affymetrix Mouse Genome 430 2.0 Array with RNA isolated from mouse femurs 4 h after lipopolysaccharide (LPS) administration. The gene expressions were confirmed with real-time PCR. The serum concentration of the N-terminal propeptide of type I collagen (PINP), a bone-formation marker, was determined using ELISA. A total of 1003 transcripts were upregulated and 159 transcripts were downregulated (more than twofold upregulation or downregulation). Increased expression levels of the inflammation-related genes interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) were confirmed from in the period 4 h to 72 h after LPS administration using real-time PCR. Gene ontogene analysis found four bone-related categories involved in four biological processes: system development, osteoclast differentiation, ossification and bone development. These processes involved 25 upregulated genes. In the KEGG database, we further analyzed the transforming growth factor β (TGF-β) pathway, which is strongly related to osteogenesis. The upregulated bone morphogenetic protein 2 (BMP2) and downregulated inhibitor of DNA binding 4 (Id4) expressions were further confirmed by real-time PCR after LPS stimulation. The osteoblast function was determined through examination of the expression levels of core binding factor 1 (Cbfa1) and osteocalcin (OC) in bone tissues and serum PINP from 4 h to 72 h after LPS administration. The expressions of OC and Cbfa1 decreased 6 h after administration (p < 0.05). Significantly suppressed PINP levels were observed in the later stage (from 8 h to 72 h, p < 0.05) but not in the early stage (4 h or 6 h, p > 0.05) of LPS stimulation. The results of this study suggest that LPS induces elevated expressions of skeletal system development- and osteoclast differentiation-related genes and inflammation genes at an early stage in the bone. The perturbed functions of these two groups of genes may lead to a faint change in osteogenesis at an early stage of LPS stimulation. Suppressed bone formation was found at later stages in response to LPS stimulation.


2020 ◽  
Author(s):  
Danylo Rafhael Costa-Silva ◽  
Francisco Adelton Alves-Ribeiro ◽  
Maria da Conceição Barros-Oliveira ◽  
Larysse Cardoso Campos-Verdes ◽  
Renato de Oliveira Pereira ◽  
...  

Abstract Background: Breast cancer, the leading cause of cancer death among women worldwide, one of the major risk factors for breast cancer is genetic changes. Changes in the expression levels of the insulin-like growth factor 1 (IGF-1) gene have been associated with increased risk and aggressiveness of breast cancer. The IGF-1 gene encodes the IGF-1 peptide that is present in most human tissues, as in the normal and neoplastic mammary gland. Here, we conducted a systematic review to investigate the influence of IGF-1 gene expression levels in women with breast cancer.Methods: PubMed, Scopus, and Web of Science databases were searched for relevant studies published between February 2 and May 15, 2019, using inclusion and exclusion criteria in accordance with PRISMA guidelines. We analyzed the studies to find association between IGF-1gene expression and breast cancer.Results: A growing number of studies in women with breast cancer support, with controversial results, the influence of IGF-1 gene expression levels on clinical-pathological factors, disease-free survival, overall survival, and resistance to tamoxifen.Conclusions: Therefore, the elucidation of IGF-1 gene expression patterns through further studies may enable the characterization of women at high risk for breast cancer, as well as the development of effective prognostic and therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document