scholarly journals VI. On the formation of definite figures by the deposition of dust

When trying some experiments which had an object other than that described in the following communication, it was noticed that a fine powder when allowed to settle on a slightly warmed plate produced figures which were remarkably clear and definite. So striking and peculiar were these figures, and so simple were the conditions of their formation, that a careful study of them was undertaken. These figures are so clear and sharp that it is easy to obtain exact photographic records of them, an important point, for, at present, it does not seem possible to offer a simple explanation of the complicated relationships which exist between the external conditions and the figures formed. Sensitive as these figures are to outside influences, the forms they assume are very characteristic of different conditions, are perfectly constant, and are easily produced. The general method of obtaining these figures is as follows:—The plate on which the figure is to be deposited is best supported on three pins about 1½ to 2 inches high, and the dust most convenient to use is that made by burning magnesium ribbon. It is kindled and allowed to burn in a receiver. A circular glass dish with straight sides, about 4 inches high and 9 inches in diameter, is a convenient form of vessel to use; and if the vessel be large enough (there should be about 2 inches between the plate and the inside of the receiver); the shape and the material of this dust containing vessel is not of much consequence. After the magnesium has burnt out, this receiver is allowed to stand for a minute or so, and it is then placed over the plate on its stand and allowed to remain there for six to seven minutes. On removing it a clear and definite figure will be found to have formed on the plate. If the plate has been a square one, then a cross consisting of four rays, each starting from a corner and meeting, but not necessarily joining, in the centre, is produced. If the corners be varnished or covered by a small piece of tinfoil (fig. 1) the cross is still formed.

1987 ◽  
Vol 65 (10) ◽  
pp. 2450-2453 ◽  
Author(s):  
Gilles Dupuis

The synthesis of succinimido 1-amino-(4-azidosalicyloyl)-3,4-dithio-5-carboxylate, a heterobifunctional photoaffinity labeling reagent, is described. The cross-linker possesses an asymmetrical disulfide bond, and a general method for generating a spacer arm bearing an asymmetrical or symmetrical disulfide bond is detailed. The heterobifunctional reagent has been obtained in a minimum of steps and intermediates have been characterized. It is further shown that the reagent can be trace-labeled with [125I]-iodine and it has been used to modify phytohemagglutinin, a model protein. Upon irradiation, polymeric phytohemagglutinin derivatives are produced, as evidenced by electrophoretic analysis.


Author(s):  
Jun Wang ◽  
Kwun-Lon Ting ◽  
Changyu Xue ◽  
Kenneth R. Currie

Mobility analysis of multi-DOF multiloop planar linkages is much more complicated than the single-DOF planar linkages and has been little explored. This paper offers a unified method to treat the singularity (dead center position) and sub-branch identification of the planar two-DOF seven-bar linkages regardless of the choice of the inputs or fixed links. This method can be extended for the singularity analysis of other multi-DOF multiloop linkages. Based on the concept of joint rotation space and N-bar rotatability laws, this paper presents a general method for the sub-branch identification of the seven-bar linkages. It offers simple explanation and geometric insights for the formation of branch, singularity and sub-branch of the two-DOF seven-bar linkages. The presented algorithm for sub-branch identification is suitable for automated computer-aided mobility identification. Examples are employed to demonstrate the proposed method.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3134 ◽  
Author(s):  
Jonathan Buchspies ◽  
Daniel J. Pyle ◽  
Huixin He ◽  
Michal Szostak

Although the palladium-catalyzed Suzuki-Miyaura cross-coupling of aryl esters has received significant attention, there is a lack of methods that utilize cheap and readily accessible Pd-phosphane catalysts, and can be routinely carried out with high cross-coupling selectivity. Herein, we report the first general method for the cross-coupling of pentafluorophenyl esters (pentafluorophenyl = pfp) by selective C–O acyl cleavage. The reaction proceeds efficiently using Pd(0)/phosphane catalyst systems. The unique characteristics of pentafluorophenyl esters are reflected in the fully selective cross-coupling vs. phenolic esters. Of broad synthetic interest, this report establishes pentafluorophenyl esters as new, highly reactive, bench-stable, economical, ester-based, electrophilic acylative reagents via acyl-metal intermediates. Mechanistic studies strongly support a unified reactivity scale of acyl electrophiles by C(O)–X (X = N, O) activation. The reactivity of pfp esters can be correlated with barriers to isomerization around the C(acyl)–O bond.


Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


Author(s):  
J. R. Fields

The energy analysis of electrons scattered by a specimen in a scanning transmission electron microscope can improve contrast as well as aid in chemical identification. In so far as energy analysis is useful, one would like to be able to design a spectrometer which is tailored to his particular needs. In our own case, we require a spectrometer which will accept a parallel incident beam and which will focus the electrons in both the median and perpendicular planes. In addition, since we intend to follow the spectrometer by a detector array rather than a single energy selecting slit, we need as great a dispersion as possible. Therefore, we would like to follow our spectrometer by a magnifying lens. Consequently, the line along which electrons of varying energy are dispersed must be normal to the direction of the central ray at the spectrometer exit.


Author(s):  
Valerie V. Ernst

During the earliest stage of oocyte development in the limpet, Acmea scutum, Golgi complexes are small, few and randomly dispersed in the cytoplasm. As growth proceeds, the Golgi complexes increase in size and number and migrate to the periphery of the cell. At this time, fibrous structures resembling striated rootlets occur associated with the Golgi complexes. Only one fibrous structure appears to be associated with a Golgi complex.The fibers are periodically cross banded with an average of 4 dense fibrils and 6 lighter fibrils per period (Fig. 1). The cross fibrils have a center to center spacing of about 7 run which appears to be the same as that of the striated rootlets of the gill cilia in this animal.


Author(s):  
Tamotsu Ohno

The energy distribution in an electron; beam from an electron gun provided with a biased Wehnelt cylinder was measured by a retarding potential analyser. All the measurements were carried out with a beam of small angular divergence (<3xl0-4 rad) to eliminate the apparent increase of energy width as pointed out by Ichinokawa.The cross section of the beam from a gun with a tungsten hairpin cathode varies as shown in Fig.1a with the bias voltage Vg. The central part of the beam was analysed. An example of the integral curve as well as the energy spectrum is shown in Fig.2. The integral width of the spectrum ΔEi varies with Vg as shown in Fig.1b The width ΔEi is smaller than the Maxwellian width near the cut-off. As |Vg| is decreased, ΔEi increases beyond the Maxwellian width, reaches a maximum and then decreases. Note that the cross section of the beam enlarges with decreasing |Vg|.


Author(s):  
E. Naranjo

Equilibrium vesicles, those which are the stable form of aggregation and form spontaneously on mixing surfactant with water, have never been demonstrated in single component bilayers and only rarely in lipid or surfactant mixtures. Designing a simple and general method for producing spontaneous and stable vesicles depends on a better understanding of the thermodynamics of aggregation, the interplay of intermolecular forces in surfactants, and an efficient way of doing structural characterization in dynamic systems.


Author(s):  
J.-F. Revol ◽  
Y. Van Daele ◽  
F. Gaill

The only form of cellulose which could unequivocally be ascribed to the animal kingdom is the tunicin that occurs in the tests of the tunicates. Recently, high-resolution solid-state l3C NMR revealed that tunicin belongs to the Iβ form of cellulose as opposed to the Iα form found in Valonia and bacterial celluloses. The high perfection of the tunicin crystallites led us to study its crosssectional shape and to compare it with the shape of those in Valonia ventricosa (V.v.), the goal being to relate the cross-section of cellulose crystallites with the two allomorphs Iα and Iβ.In the present work the source of tunicin was the test of the ascidian Halocvnthia papillosa (H.p.). Diffraction contrast imaging in the bright field mode was applied on ultrathin sections of the V.v. cell wall and H.p. test with cellulose crystallites perpendicular to the plane of the sections. The electron microscope, a Philips 400T, was operated at 120 kV in a low intensity beam condition.


Author(s):  
Yimei Zhu ◽  
Masaki Suenaga ◽  
R. L. Sabatini ◽  
Youwen Xu

The (110) twin structure of YBa2Cu3O7 superconductor oxide, which is formed to reduce the strain energy of the tetragonal to orthorhombic phase transformation by alternating the a-b crystallographic axis across the boundary, was extensively investigated. Up to now the structure of the twin boundary still remained unclear. In order to gain insight into the nature of the twin boundary in Y-Ba-Cu-O system, a study using electron diffraction techniques including optical and computed diffractograms, as well as high resolution structure imaging techniques with corresponding computer simulation and processing was initiated.Bulk samples of Y-Ba-Cu-O oxide were prepared as described elsewhere. TEM specimens were produced by crushing bulk samples into a fine powder, dispersing the powder in acetone, and suspending the fine particles on a holey carbon grid. The electron microscopy during this study was performed on both a JEOL 2000EX and 2000FX electron microscopes operated at 200 kV.


Sign in / Sign up

Export Citation Format

Share Document