scholarly journals Solid state convection models of the lunar internal temperature

Thermal models of the Moon, which include cooling by subsolidus creep and consideration of the creep behaviour of geologic material, provide estimates of 1500- 1600 K for the temperature, and 10 21-1022 cm2/s for the viscosity of the deep lunar interior.

1993 ◽  
Vol 98 (E9) ◽  
pp. 17127 ◽  
Author(s):  
C. M. Pieters ◽  
J. W. Head ◽  
J. M. Sunshine ◽  
E. M. Fischer ◽  
S. L. Murchie ◽  
...  
Keyword(s):  
The Moon ◽  

Author(s):  
Rachel L. Klima ◽  
Noah E. Petro

Water and/or hydroxyl detected remotely on the lunar surface originates from several sources: (i) comets and other exogenous debris; (ii) solar-wind implantation; (iii) the lunar interior. While each of these sources is interesting in its own right, distinguishing among them is critical for testing hypotheses for the origin and evolution of the Moon and our Solar System. Existing spacecraft observations are not of high enough spectral resolution to uniquely characterize the bonding energies of the hydroxyl molecules that have been detected. Nevertheless, the spatial distribution and associations of H, OH − or H 2 O with specific lunar lithologies provide some insight into the origin of lunar hydrous materials. The global distribution of OH − /H 2 O as detected using infrared spectroscopic measurements from orbit is here examined, with particular focus on regional geological features that exhibit OH − /H 2 O absorption band strengths that differ from their immediate surroundings. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.


Author(s):  
Long Xiao ◽  
James W. Head

The geological characteristics of the Moon provide the fundamental data that permit the study of the geological processes that have formed and modified the crust, that record the state and evolution of the lunar interior, and that identify the external processes that have been important in lunar evolution. Careful documentation of the stratigraphic relationships among these features can then be used to reconstruct the sequence of events and the geological history of the Moon. These results can then be placed in the context of the geological evolution of the terrestrial planets, including Earth. The Moon’s global topography and internal structures include landforms and features that comprise the geological characteristics of its surface. The Moon is dominated by the ancient cratered highlands and the relatively younger flat and smooth volcanic maria. Unlike the current geological characteristics of Earth, the major geological features of the Moon (impact craters and basins, lava flows and related features, and tectonic scarps and ridges) all formed predominantly in the first half of the solar system’s history. In contrast to the plate-tectonic dominated Earth, the Moon is composed of a single global lithospheric plate (a one-plate planet) that has preserved the record of planetary geological features from the earliest phases of planetary evolution. Exciting fundamental outstanding questions form the basis for the future international robotic and human exploration of the Moon.


Geosciences ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 498
Author(s):  
Deepak Dhingra

Volatile-bearing lunar surface and interior, giant magmatic-intrusion-laden near and far side, globally distributed layer of purest anorthosite (PAN) and discovery of Mg-Spinel anorthosite, a new rock type, represent just a sample of the brand new perspectives gained in lunar science in the last decade. An armada of missions sent by multiple nations and sophisticated analyses of the precious lunar samples have led to rapid evolution in the understanding of the Moon, leading to major new findings, including evidence for water in the lunar interior. Fundamental insights have been obtained about impact cratering, the crystallization of the lunar magma ocean and conditions during the origin of the Moon. The implications of this understanding go beyond the Moon and are therefore of key importance in solar system science. These new views of the Moon have challenged the previous understanding in multiple ways and are setting a new paradigm for lunar exploration in the coming decade both for science and resource exploration. Missions from India, China, Japan, South Korea, Russia and several private ventures promise continued exploration of the Moon in the coming years, which will further enrich the understanding of our closest neighbor. The Moon remains a key scientific destination, an active testbed for in-situ resource utilization (ISRU) activities, an outpost to study the universe and a future spaceport for supporting planetary missions.


Mare basalts, which are believed to form by partial melting at considerable depths in the lunar interior, are capable of providing a wealth of information concerning the compositions of their source regions. Conversely, any acceptable estimate of the lunar bulk composition must in principle be able to provide source regions capable of yielding mare basalts. A wide range of lunar bulk compositions has been proposed in the recent literature. These differ principally in the proportions of involatile elements, e.g. Ca, A1, to elements of moderate volatility, e.g. Mg, Si, Fe. A detailed experimental investigation has been made of the capacity of the Taylor—Jakes compositional model (8.2 % A12O3) to provide source regions for mare basalts. It is demonstrated that this composition is much too rich in alumina to be acceptable. Other lunar bulk compositions even richer inA12O3 such as those advocated by Ganapathy & Anders, Wanke and co-workers and Anderson can likewise be rejected. In order to produce mare basalts, particularly the least fractionated varieties represented by some Apollo 12 and 15 basalts, lunar bulk compositions containing only about 4 % of A12O3 appear to be required. This is similar to the alumina content of the Earth’s mantle. The relative abundances of many other involatile elements, e.g. Ga, U, Ti, r.e.e., Zr, Ba, Sr, may likewise be similar in the Moon and in the Earth’s mantle. These relationships point towards a common origin for the Moon and for the Earth’s mantle.


Harmonic analysis of the Moon’s shape based on all available sets of hypsometric data disclose that the surface of the Moon, far from being a mere spheroid or ellipsoid, contains many significant harmonic terms, the single largest of which are of fourth order (being about three times as large as the second harmonics). Their sum makes the Moon to deviate from a mean sphere by ± 2 km over extensive regions; and local differences attaining 8 to 9 km in eleva­tion have been noted on the limb. These facts reveal that the lunar globe must possess sufficient strength to sustain stress differences of the order of 10 9 dyn/cm 2 ; and this could scarcely be the case if the large part of the Moon’s interior were molten. As melting should be expected if the Moon contained the same proportion of radioactive elements as chondritic meteroites, it is concluded that the mean radioactive content of the lunar interior must be less than that found in stony meteorites, or the terrestrial crust. The moments of inertia about the principal axes of inertia of the lunar globe, as determined from the Moon’s physical librations, are seriously at variance with a state of hydrostatic equilibrium—for any distance between the Earth and the Moon—of a homogeneous body, and can be accounted for only by assuming an asymmetric nonhomogeneity of the lunar globe, or the existence of internal processes which could support nonequilibrium from hydrodynamically. However, an application of Chandrasekhar’s theory of viscous convection in fluid globes reveals that, if such a globe is to possess the same difference, C – A , of momenta as the Moon, the velocity of convective motion should be of the order of 10 –8 cm/s (i. e. too small for the establishment of steady flow in 10 9 y); and the 'observed' value of the Rayleigh number characteristic of the Moon is several hundred times as large as that required theoretically for the stability of the respective flow. Thermoelastic effects due to secular insolation of the lunar globe, considered recently by Levin, are shown incapable to account for a value of the ratio (C – A)/B exceeding 0∙00005; while its empirical value deduced from librations is close to 0∙00063.


Author(s):  
T. G. Müller ◽  
M. Burgdorf ◽  
V. Ali-Lagoa ◽  
S. A. Buehler ◽  
M. Prange

1972 ◽  
Vol 47 ◽  
pp. 377-383
Author(s):  
S. K. Runcorn

It is natural to inquire whether thermal convection is occurring in the Moon through solid state creep processes. The primary evidence is the departure of the Moon from the figure of hydrostatic equilibrium, but certain difficulties in the thermal history of the Moon are eased by assuming heat transfer by convection. If convection exists in the Moon it must have a second harmonic pattern, otherwise the lunar moments of inertia would not differ.Two important predictions of the marginal theory of convection: the existence of a core of radius 0.06–0.3 of the lunar radius (for a second ergee harmonic) and the value of 0.4 for the ratio of the dynamical to surface ellipticities now have support, the latter from the data of the heights of the lunar surface. The former prediction is compatible with the value of the moment of inertia factor now found if the Moon's interior is ‘hot’.Further the existence of a fluid iron core 3400 m.y. ago seems required as a result of the remanent magnetization of the crystalline rocks of the maria basins inferred from the remanent magnetization of the returned Apollo samples and the fields measured by the Apollo 12 and Explorer magnetomers.


2019 ◽  
Vol 6 (6) ◽  
pp. 1247-1254 ◽  
Author(s):  
Yanhao Lin ◽  
Wim van Westrenen

AbstractThe traditional view of a dry, volatile-poor Moon has been challenged by the identification of water and other volatiles in lunar samples, but the volatile budget delivery time(s), source(s) and temporal evolution remain poorly constrained. Here we show that hydrogen and chlorine isotopic ratios in lunar apatite changed significantly during the Late Accretion (LA, 4.1–3.8 billion years ago). During this period, deuterium/hydrogen ratios in the Moon changed from initial carbonaceous-chondrite-like values to values consistent with an influx of ordinary-chondrite-like material and pre-LA elevated δ37Cl values drop towards lower chondrite-like values. Inferred pre-LA lunar interior water contents are significantly lower than pristine values suggesting degassing, followed by an increase during the LA. These trends are consistent with dynamic models of solar-system evolution, suggesting that the Moon's (and Earth's) initial volatiles were replenished ∼0.5 Ga after their formation, with their final budgets reflecting a mixture of sources and delivery times.


Sign in / Sign up

Export Citation Format

Share Document