scholarly journals Diamonds on Diamond: structural studies at extreme conditions on the Diamond Light Source

Author(s):  
M. I. McMahon

Extreme conditions (EC) research investigates how the structures and physical and chemical properties of materials change when subjected to extremes of pressure and temperature. Pressures in excess of one million times atmospheric pressure can be achieved using a diamond anvil cell, and, in combination with high-energy, micro-focused radiation from a third-generation synchrotron such as Diamond, detailed structural information can be obtained using either powder or single-crystal diffraction techniques. Here, I summarize some of the research drivers behind international EC research, and then briefly describe the techniques by which high-quality diffraction data are obtained. I then highlight the breadth of EC research possible on Diamond by summarizing four examples from work conducted on the I15 and I19 beamlines, including a study which resulted in the first research paper from Diamond. Finally, I look to the future, and speculate as to the type of EC research might be conducted at Diamond over the next 10 years.

Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 459 ◽  
Author(s):  
Simone Anzellini ◽  
Silvia Boccato

In the past couple of decades, the laser-heated diamond anvil cell (combined with in situ techniques) has become an extensively used tool for studying pressure-temperature-induced evolution of various physical (and chemical) properties of materials. In this review, the general challenges associated with the use of the laser-heated diamond anvil cells are discussed together with the recent progress in the use of this tool combined with synchrotron X-ray diffraction and absorption spectroscopy.


Author(s):  
Zefang Yang ◽  
Lin Zhu ◽  
Chao-Nan Lv ◽  
Rui Zhang ◽  
Hai-Yan Wang ◽  
...  

Molybdenum disulfide, a typically layered transition metal chalcogenide, is considered one of the promising electrode candidates for next-generation high energy density batteries owing to its tunable physical and chemical properties,...


2014 ◽  
Vol 70 (a1) ◽  
pp. C141-C141
Author(s):  
Ozen Ozgen ◽  
Engin Kendi ◽  
Semra Koyunoglu ◽  
Akgul Yesilada ◽  
Hwo-Shuenn Sheu

A significant part of medicine is based on the discovery and development of drugs. It is very important to know the crystal structure of pharmaceutical compounds for fundamental understanding of structure, physical and chemical properties. Many of these materials are available only as powders. So any structural information must be obtained from powder diffraction. I am going to present following the stages while solving the structure of C23H19N4OBr, 2-[3-phenyl-4(m-bromophenyl)-2-pyrazolin-1-yl]-3-methyl-4(3H)-quinazolinone, from 2-pyrazolines derivatives. The compounds are known to display various biological properties such as fungicidal insecticidal, anti bacterial, anti viral activities, pharmacological properties such as antiinflammatory agents and have industral properties(1). The powder diffraction data was collected with Debye Scherrer camera at the BL01C2 beamline at room temperature in National Synchrotron Radiation Research Center(NSRRC), Taiwan. X-ray of wavelength was 1.0333Å. This compound crystallizes in orthorhombic system space group P bca, Z=8, unit cell parameters of a=25.83(1)Å, b=15.55(5)Å, c=10.63(3)Å, and V=4266.0(10)Å3. Reliability factors were reached Rwp=0.075, Rp=0.053, RB=0.086 ve S=1.31 after Rietveld refinement.


2017 ◽  
Vol 888 ◽  
pp. 485-490
Author(s):  
Tengku Sharifah Marliza ◽  
Mohd Ambar Yarmo ◽  
Azizul Hakim ◽  
Maratun Najiha Abu Tahari ◽  
Yun Hin Taufiq-Yap

Supported ionic liquid (IL) [bmim][CF3SO3] on SiO2 was prepared, characterized and its potential evaluated for CO2 capture via adsorption and desorption studies using gas adsorption analyzer. The physical and chemical properties were determined using N2 adsorption/desorption and CO2-TPD analysis. The increasing IL loading caused a drastic decrease in the surface area as well as pore volume due to the confinement of IL within the micropore and mesopore area. However, the increasing IL loading increased the basicity of the sorbent which significantly enhanced CO2 chemisorption. Supported [bmim][CF3SO3] on SiO2 revealed the physical and chemical adsorption of CO2 and resulted in a remarkable CO2 adsorption capacity at atmospheric pressure and room temperature (66.7 mg CO2/gadsorbent) which has great potential in industrial applications.


2021 ◽  
Vol 11 (22) ◽  
pp. 10527
Author(s):  
Dehui Xu ◽  
Xinying Zhang ◽  
Jin Zhang ◽  
Rui Feng ◽  
Shuai Wang ◽  
...  

With increasing drug resistance of Pseudomonas aeruginosa, a new sterilization method is needed. Plasma has been shown to be an effective method of sterilization, but no researchers have studied the effect of plasma on bacterial metabolism. In this paper, we studied the emission spectrum, liquid phase active particles, and other physical and chemical properties of a portable plasma device. Pseudomonas aeruginosa were then treated with activated water generated by surface plasma discharge. Using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we obtained the differential metabolite pathways. The results showed that, after plasma activated water treatment, the carbohydrate metabolism of the bacteria was inhibited and the metabolic processes of protein and amino acid decomposition were enhanced. Therefore, water activated by atmospheric-pressure cold plasma can significantly change bacterial metabolites, thus promoting bacterial death.


MRS Bulletin ◽  
1986 ◽  
Vol 11 (6) ◽  
pp. 26-29 ◽  
Author(s):  
Leslie Brunetta

Victorian men placed fig leaves over those parts of classical statues they didn't want their wives and children to see. Yet it's easy for someone looking at those statues today to assume that the leaves play some part in the Roman and Greek concepts of physical beauty.A fig leaf may be the most blatant breach of an artist's original inspiration you'll encounter in a museum, but it's not likely to be the only one. Other more subtle transgressions are displayed in nearly every gallery and museum in the country—but unmasking them takes more than just a discerning eye. For instance, did the 17th-century painter see the world as quiet and subdued, or have his bright colors been muted by a 19th-century varnish? Did the classical sculptor intend his work to have an even, green patina, or has the Renaissance infatuation with antiquity allowed this corrosion to hide his varying shades of burnished bronze? Did Leonardo conceive the face of the Christ of “The Last Supper” as speaking, or silent, as his overpainters would have it?“Modern conservators really make us think about objects, says Carol Faill, administrator of college collections at Franklin & Marshall College. “There's been a consciousness raising about objects' own integrity.” Art and science are being used together as never before to gain an understanding of the physical and chemical properties of materials and their role in the fine arts.


2010 ◽  
Vol 444 ◽  
pp. 1-15 ◽  
Author(s):  
Michel Wautelet

Nanosciences and nanotechnology (NST) constitute currently a major research field all over the world. NST deal with the study of phenomena and manipulation of materials at atomic, molecular and macromolecular scales, where properties differ significantly from those at the larger scale. The properties of materials can be different at the nanoscale for two main reasons : size and quantum effects. Effects negligible at the macroscopic level become important at the nanometer scale, and vice versa. Scaling laws are described in order to understand some differences. Moreover, geometric arguments are necessary to understand the origin of some physical and chemical properties of nanosystems. On the other hand, quantum effects can begin to dominate the behaviour of matter at the nanoscale – particularly at the lower end – affecting the optical, electrical and magnetic behaviour of materials. The characteristic dimensions for which the properties change from the “macro-“ to the “nano-“ regimes are discussed.


1988 ◽  
Vol 142 ◽  
Author(s):  
Robert E. Green

AbstractIn recent years classical nondestructive testing techniques for detecting macroscopic defects have been augmented by more sophisticated nondestructive evaluation methods for characterizing the microstructure and associated physical and chemical properties of materials. This paper will briefly describe several such nondestructive evaluation methods developed in the Center for Nondestructive Evaluation (CNDE) at The Johns Hopkins University.


Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 556 ◽  
Author(s):  
Ren ◽  
Shen ◽  
Yu ◽  
Phan ◽  
Chen ◽  
...  

Drugs with poor biopharmaceutical performance are the main obstacle to the development and design of medicinal preparations. The anisotropic surface chemistry of different surfaces on the crystal influences its physical and chemical properties, such as solubility, tableting, etc. In this study, the antisolvent crystallization and rapid-cooling crystallization were carried out to tune the crystal habits of ticagrelor (TICA) form II. Different crystal habits of ticagrelor (TICA) form II (TICA-A, TICA-B, TICA-C, TICA-D, and TICA-E) were prepared and evaluated for solubility. The single-crystal diffraction (SXRD) indicated that TICA form II belongs to the triclinic P1 space group with four TICA molecules in the asymmetric unit. The TICA molecules are generated through intermolecular hydrogen bonds along the (010) direction, forming an infinite molecular chain, which are further stacked by hydrogen bonds between hydroxyethoxy side chains, forming molecular circles composed of six TICA molecules along bc directions. Thus, in the case of TICA form II, hydrogen bonds drive growth along one axis (b-axis), which results in the formation of mostly needle-shape crystals. Morphology and face indexation reveals that (001), (010) and (01-1) are the main crystal planes. Powder diffractions showed that five habits have the same crystal structure and different relative intensity of diffraction peak. The solubility of the obtained crystals showed the crystal habits affect their solubility. This work is helpful for studying the mechanism of crystal habit modification and its effect on solubility.


Sign in / Sign up

Export Citation Format

Share Document