scholarly journals Optimization of bioinspired triangular patterns for water condensation and transport

Author(s):  
Dong Song ◽  
Bharat Bhushan

Water condenses on a surface in ambient environment if the surface temperature is below the dew point. For water collection, droplets should be transported to storage before the condensed water evaporates. In this study, Laplace pressure gradient inspired by conical spines of cactus plants is used to facilitate the transport of water condensed in a triangular pattern to the storage. Droplet condensation, transportation and water collection rate within the bioinspired hydrophilic triangular patterns with various lengths and included angles, surrounded by superhydrophobic regions, were explored. The effect of relative humidity was also explored. This bioinspired technique can be used to develop efficient water collection systems. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’.

Author(s):  
Dong Song ◽  
Bharat Bhushan

Cacti use spines with conical geometry to transport water to its base. A conical shape with curvature gradient generates a Laplace pressure gradient along the droplet, which is responsible for droplet motion. In this study, the triangular shape was used which also generates a Laplace pressure gradient along the droplet. A bioinspired surface, composed of a hydrophilic triangular pattern surrounded by a rim of superhydrophobic region, was used to transport water collected from the fog on the hydrophilic pattern. The growing droplets start to coalesce into bigger ones. Eventually, they are big enough to touch the superhydrophobic borders, which trigger the transport motion. Droplet mobility and water collection measurements were made on triangular patterns with various geometries to determine the most efficient configurations. Results from this study can be used to enhance the performance of water collection systems from fog. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’.


Author(s):  
Dev Gurera ◽  
Bharat Bhushan

Nature is known for using conical shapes to transport the collected water from fog for consumption or storage. The curvature gradient of the conical shape creates a Laplace pressure gradient in the water droplets which drives them towards the region of lower curvature. Linear cones with linearly increasing radii have been studied extensively. A smaller tip angle cone transports water droplets farther because of higher Laplace pressure gradient. Whereas a larger tip angle with a larger surface slope transports water droplets because of higher gravitational forces. In this study, for the first time, a nonlinear cone with a concave profile has been designed with small tip angle and nonlinearly increasing radius to maximize water collection. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’.


Author(s):  
Dong Song ◽  
Bharat Bhushan

Desert beetles and cactus plants collect water from fog in arid regions. The desert beetle uses heterogeneous wettability to transport water to its mouth. A cactus uses conical spines which provide Laplace pressure gradient to transport water to its base. In this study, bioinspired triangular patterns with various wettability and different from the surrounding regions were investigated to transport condensed water from ambient air. A low temperature of 5°C was used to decrease saturated vapour pressure to promote water condensation. Results from this study can be used to enhance the performance of water collection systems. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology’.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012122
Author(s):  
H Teufl ◽  
M Schuss ◽  
A Mahdavi

Abstract Radiant cooling systems are being increasingly promoted because of their energy efficient operation as well as their potential to improve occupants’ thermal comfort due to a draft-free cooling process. This paper focuses on a specific radiant cooling approach, which was introduced in previous contributions. This approach involves the positioning of relatively small-sized vertical radiant panels in the close proximity to occupants. Furthermore, the panels incorporate drainage systems or collection elements to accommodate, if needed, water vapour condensation. Consequently, the surface temperature of the radiant panels does not need to stay above the dew point temperature. We present the outcome of a preliminary experimental investigation of such a personal radiant cooling system. In this context, prototypical radiant panels were installed in a laboratory and multiple experiments were conducted. The uniformity level of the panels’ surface temperature distribution was documented. Moreover, near-panel air flow velocities were measured at several positions. Likewise, the formation of condensed water on panels was observed for different panel surface temperatures, room temperatures, and room humidity levels. The results of the preliminary laboratory investigation do not point to any risk of draft or turbulence discomfort.


Author(s):  
Charles T. Schriner ◽  
Bharat Bhushan

Cacti use the Laplace pressure gradient due to conical geometry as a mechanism for collecting water from fog. Bioinspired surfaces using conical geometry can be developed for water collection from fog for human consumption. A systematic study is presented which investigates the dynamics of water droplets on a bioinspired conical surface. A series of experiments was conducted where a known volume of droplets was deposited on the cone. This was followed by an investigation into droplet dynamics where the droplets are deposited from fog and the volume is unknown. This includes a study on the macroscopic level as well as the microscopic level. The main parameters that were varied for these tests were the tip angle and the cone orientation. The droplet movement observed was compared relatively. Based on captured videos of droplet movement, distance travelled and velocities were measured. The Laplace pressure gradient, gravity and droplet coalescence were found to be the mechanisms of droplet movement on a conical surface. The findings of this study should be of interest in designing bioinspired surfaces with high water collection. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’.


2021 ◽  
Author(s):  
Souparna Chakraborty ◽  
Abhirup Chaudhuri ◽  
Chirodeep Bakli

Abstract The water crisis affects the lives of millions over the world. Minimizing water losses in major water-consuming industries like power plants is of utmost importance. Since cooling towers lead to huge amounts of water loss, implementing modifications for recovering a fraction of this lost water in the exhaust has been a topic of active research. These modifications are often inspired by biological species, especially in arid regions, which have adapted in different ways by collecting water from fog, and hence biomimetic has become popular for water harvesting techniques. We revisit the fog collection technique most commonly used in nature and compare the relative merits of the same with surface texture and wettability. Arrays of spines of three different configurations were considered in this study — namely cuboidal, cylindrical and conical shapes. A theoretical model is developed to carry out a comparative analysis of these configurations considered. The effects of Laplace pressure gradient, gravity, topography and tilt angle on droplet transportation along the spines were explored to decipher the most efficient water transport and collection route. The observations are explained by performing extensive Molecular Dynamics (MD) simulations to bring out the interplay of surface tension and roughness at the contact line verifying the proposed formulations. The conical-shaped spines exhibited maximum transport and collection efficiency for zero tilt angle. Both cuboidal and cylindrical shaped spines showed little or no water collection when the spines are oriented horizontally. This is due to the Laplace pressure gradient which arises from varying radii of curvature of the conical shaped spine which drives the water droplets towards the base but is absent for the other two cases considered. On the contrary, when there is some finite tilt angle, the contribution of gravity comes into consideration and the water collection rate of the conical and cylindrical spines becomes comparable. Both Laplace pressure gradient and gravity help in water transport in the conical case whereas only gravity assists the water transport process for cylindrical spines. Still, the water collection rate is almost the same for these two scenarios due to enhanced coalescence of liquid droplets for the cylindrical case as is observed from MD simulations. As the droplets coalesce, they get larger and gravity aids the transport process by overcoming the solid-liquid interaction strength. Cuboidal shaped spines show the least efficiency with only gravity to assist the transport process and no coalescence is observed in this case. Moreover, the geometrical disparity makes the tips of conical spines more hydrophobic compared to the others which further ameliorates the water collection efficiency.


Author(s):  
Bharat Bhushan ◽  
Wei Feng

To address water shortages worldwide, proactive measures are needed to supplement the water supply. In arid regions, many plants and animals use fog or the moisture in air as a source of water. An important consideration for efficient water collection is to transport collected water droplets as rapidly as possible to storage/use before they are evaporated. Triangular geometry has been used for faster transport of water droplets. In the case of a triangular geometry, if a droplet is placed at its apex, the droplet is driven across the triangular region by the Laplace pressure gradient. However, the magnitude of the gradient decreases along the triangle. In this study, nested triangles were designed to provide a higher pressure gradient. Water condensation and transport studies were carried out on the nested pattern at a temperature below the dew point in ambient air. It was found that the nested pattern increases the droplet travel speed. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 3)’.


Author(s):  
M. Jadidi ◽  
M. A. Farzad ◽  
J. Y. Trepanier ◽  
A. Dolatabadi

Water droplet impact on horizontal glass, aluminum, and superhydrophobic surfaces is experimentally investigated using high speed imaging. Experiments are performed at three different relative humidities (i.e. 10, 20 and 30%) and three surface temperatures (i.e. 20, 2 and −2°C) to ascertain their effects on droplet spreading and recoil behaviors. In this study, the droplet Weber number, Reynolds number, and the ambient air temperature are fixed at 16.2, 1687, and 23°C, respectively. The high-speed images of impact, spreading and recoil of the droplets as well as the temporal variations of droplet spreads are prepared. Results show that the ratio of surface temperature to dew point temperature (which depends on the air temperature and relative humidity) has a significant influence on droplet spreading, recoil, and contact angle. When this ratio is less than one, condensation and frost formation become important. Decreasing the mentioned ratio (it can be done by decreasing the surface temperature or increasing the relative humidity) causes the droplet spreading factor for hydrophilic surfaces to increase significantly. For superhydrophobic surface, decreasing this ratio (within the mentioned range) does not influence the maximum spreading. However, the recoiling phase is slowed down and the droplet detachment time form the superhydrophobic surface is increased noticeably. In addition, the equilibrium contact angle decreases as the mentioned ratio decreases.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Arun Kumar Shrestha ◽  
Arati Thapa ◽  
Hima Gautam

Monitoring and prediction of the climatic phenomenon are of keen interest in recent years because it has great influence in the lives of people and their environments. This paper is aimed at reporting the variation of daily and monthly solar radiation, air temperature, relative humidity (RH), and dew point over the year of 2013 based on the data obtained from the weather station situated in Damak, Nepal. The result shows that on a clear day, the variation of solar radiation and RH follows the Gaussian function in which the first one has an upward trend and the second one has a downward trend. However, the change in air temperature satisfies the sine function. The dew point temperature shows somewhat complex behavior. Monthly variation of solar radiation, air temperature, and dew point shows a similar pattern, lower at winter and higher in summer. Maximum solar radiation (331 Wm-2) was observed in May and minimum (170 Wm-2) in December. Air temperature and dew point had the highest value from June to September nearly at 29°C and 25°C, respectively. The lowest value of the relative humidity (55.4%) in April indicates the driest month of the year. Dew point was also calculated from the actual readings of air temperature and relative humidity using the online calculator, and the calculated value showed the exact linear relationship with the observed value. The diurnal and nocturnal temperature of each month showed that temperature difference was relatively lower (less than 10°C) at summer rather than in winter.


Author(s):  
Yusuke Aoyama ◽  
Kengo Suzuki ◽  
Yutaka Tabe ◽  
Takemi Chikahisa

This paper examines the role of micro porous layers (MPLs) in Polymer Electrode Fuel Cells (PEFCs) by observing the cross-sectional distribution of condensed water inside a cathode side MPL In addition, the forms of water condensation in the vicinity of a MPL are also compared between two places, under flow channels and under lands, by observing both inside the MPL and an interface between the MPL and a catalyst layer (CL). The freezing method and a cryo-scanning electronic microscope (cryo-SEM) are used for the observation. The result under the non-flooded condition shows that condensed water does not accumulate inside the MPL. This result indicates that the water produced by PEFC power generation passes through the MPL as vapor state under non-flooded conditions.


Sign in / Sign up

Export Citation Format

Share Document