scholarly journals Greenhouse gases drove the increasing trends in spring precipitation across the central USA

Author(s):  
Wei Zhang ◽  
Gabriele Villarini

The central USA experienced major flooding during spring 2019, with both the Missouri and Mississippi Rivers at major flood stage at several locations, causing levees to breach and widespread flooding. Here, we examine the total precipitation responsible for the spring 2019 flooding across the central USA from the perspective of weather types. We focus on the weather type (referred to as ‘Midwest Water Hose’ (MWH) (Zhang and Villarini. 2019 Climate Dynamics 53 , 4217–4232. ( doi:10.1007/s00382-019-04783-4 ))) that contributes the most to the total precipitation across the central USA. This weather type contributed to more than 70% of the total precipitation received across much of this region during January–May 2019, and it has been occurring increasingly frequently over the past 40 years. Furthermore, we found that climate model experiments with the historical change of greenhouse gas concentration can well reproduce the observed rising trend, while this is not the case for the natural forcing experiments. Therefore, the rising trend and the high frequency of the MWH can be mainly attributed to the rising greenhouse gases caused by human activities, rather than natural forcing. This article is part of a discussion meeting issue ‘Intensification of short-duration rainfall extremes and implications for flash flood risks’.

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1617
Author(s):  
Yonas B. Dibike ◽  
Rajesh R. Shrestha ◽  
Colin Johnson ◽  
Barrie Bonsal ◽  
Paulin Coulibaly

Flows originating from cold and mountainous watersheds are highly dependent on temperature and precipitation patterns, and the resulting snow accumulation and melt conditions, affecting the magnitude and timing of annual peak flows. This study applied a multiple linear regression (MLR) modelling framework to investigate spatial variations and relative importance of hydroclimatic drivers of annual maximum flows (AMF) and mean spring flows (MAMJflow) in 25 river basins across western Canada. The results show that basin average maximum snow water equivalent (SWEmax), April 1st SWE and spring precipitation (MAMJprc) are the most important predictors of both AMF and MAMJflow, with the proportion of explained variance averaging 51.7%, 44.0% and 33.5%, respectively. The MLR models’ abilities to project future changes in AMF and MAMJflow in response to changes to the hydroclimatic controls are also examined using the Canadian Regional Climate Model (CanRCM4) output for RCP 4.5 and RCP8.5 scenarios. The results show considerable spatial variations depending on individual watershed characteristics with projected changes in AMF ranging from −69% to +126% and those of MAMJflow ranging from −48% to +81% by the end of this century. In general, the study demonstrates that the MLR framework is a useful approach for assessing the spatial variation in hydroclimatic controls of annual maximum and mean spring flows in the western Canadian river basins. However, there is a need to exercise caution in applying MLR models for projecting changes in future flows, especially for regulated basins.


2018 ◽  
Vol 18 (11) ◽  
pp. 2893-2919 ◽  
Author(s):  
Gavkhar Mamadjanova ◽  
Simon Wild ◽  
Michael A. Walz ◽  
Gregor C. Leckebusch

Abstract. The purpose of this study is to understand atmospheric factors, which cause mudflow variability on interannual and longer timescales, from local to synoptic scales. In a first step, historical data of mudflow occurrences in Uzbekistan provided by the Centre of Hydrometeorological Service of the Republic of Uzbekistan (Uzhydromet) for more than 140 years were analysed. During the investigation period a total of about 3000 mudflow events were observed with about 21 events per year on average. The majority of mudflows occur during the advection of westerly airflow when moist air from central and southern Europe reaches Uzbekistan. This synoptic weather type (SWT) can be related to one of the 15 primary synoptic circulation types over central Asia (CA) and Uzbekistan, which were subjectively derived by Bugayev and Giorgio in the 1930s and 1940s. To understand the main atmospheric regimes steering the variability in mudflow occurrences, we additionally applied an objective classification following the circulation weather type (CWT) approach. By means of the CWT approach, we found that on mudflow days the frequencies of cyclonic (C), westerly (W), south-westerly (SW) and north-westerly (NW) stream flows are increased in comparison to the climatological frequency of the occurrence of these circulation weather patterns. Results confirm that CWT westerly airflow initiates relatively more mudflow events comparing to other CWTs in the study area. An integrated approach of the CWT classification and an antecedent daily rainfall model are combined together in logistic regression analysis to construct a mudflow-triggering precipitation threshold for every CWT class. In general W, SW and C weather types require less antecedent rainfall to trigger mudflow occurrences in the study area. This technique is thus shown to be applicable to coarse-resolution climate model diagnostics.


2017 ◽  
Vol 21 (2) ◽  
pp. 963-980 ◽  
Author(s):  
Vojtěch Svoboda ◽  
Martin Hanel ◽  
Petr Máca ◽  
Jan Kyselý

Abstract. Characteristics of rainfall events in an ensemble of 23 regional climate model (RCM) simulations are evaluated against observed data in the Czech Republic for the period 1981–2000. Individual rainfall events are identified using the concept of minimum inter-event time (MIT) and only heavy events (15 % of events with the largest event depths) during the warm season (May–September) are considered. Inasmuch as an RCM grid box represents a spatial average, the effects of areal averaging of rainfall data on characteristics of events are investigated using the observed data. Rainfall events from the RCM simulations are then compared to those from the at-site and area-average observations. Simulated number of heavy events and seasonal total precipitation due to heavy events are on average represented relatively well despite the higher spatial variation compared to observations. RCM-simulated event depths are comparable to the area-average observations, while event durations are overestimated and other characteristics related to rainfall intensity are significantly underestimated. The differences between RCM-simulated and at-site observed rainfall event characteristics are in general dominated by the biases of the climate models rather than the areal-averaging effect. Most of the rainfall event characteristics in the majority of the RCM simulations show a similar altitude-dependence pattern as in the observed data. The number of heavy events and seasonal total precipitation due to heavy events increase with altitude, and this dependence is captured better by the RCM simulations with higher spatial resolution.


2019 ◽  
Author(s):  
Els Van Uytven ◽  
Jan De Niel ◽  
Patrick Willems

Abstract. In recent years many methods for statistical downscaling of the climate model outputs have been developed. Each statistical downscaling method (SDM) has strengths and limitations, but those are rarely evaluated. This paper proposes an approach to evaluate the skill of SDMs for the specific purpose of impact analysis in hydrology. The skill is evaluated by the verification of the general statistical downscaling assumptions, and by the perfect predictor experiment that includes hydrological impact analysis. The approach has been tested for an advanced weather typing based SDM and for impact analysis on river peak flows in a Belgian river catchment. Significant shortcomings of the selected SDM were uncovered such as biases in the frequency of weather types and non-stationarities in the extreme precipitation distribution per weather type. Such evaluation of SDMs becomes of use for future tailoring of SDM ensembles to end user needs.


MAUSAM ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 221-230
Author(s):  
O. P. SINGH ◽  
K. RUPA KUMAR ◽  
P. K. MISHRA ◽  
K. KRISHNA KUMAR ◽  
S. K. PATWARDHAN

Lkkj & bl 'kks/k&i= esa HkweaMyh; tyok;q ifjorZu ds ifj.kkeLo:i 'krkCnh ds e/; ¼2041&60½ ds nkSjku ,f’k;kbZ xzh"edkyhu ekulwu ds fof’k"V y{k.kksa dk iwokZuqeku djus ds mÌs’; ls vuqdj.k iz;ksxksa ds ifj.kke izLrqr fd, x, gSaA blds fy, gSMys tyok;q iwokZuqeku vkSj vuqla/kku dsUnz] ;w- ds- dk {ks=h; tyok;q ekWMy gSM vkj- ,e- 2 dk mi;ksx fd;k x;k gSA ,f’k;kbZ {ks= ds fy, 20 o"kksZa dh vof/k ds nks vuqdj.k iz;ksx fd, x, gSa uker% igyk] 1990 Lrjksa ds vuq:i xzhu gkml xSl lkanz.k dh fu/kkZfjr ek=k] ftls dUVªksy ¼lh- Vh- ,y-½ iz;ksx dgk x;k gS vkSj nwljk 1990 ls ysdj 2041&60 rd ds fy, xzhu gkml xSl lkanz.k ds okf"kZd feJ.k esa 1 izfr’kr dh o`f) lesr ftls vkxs xzhu gkml xSl ¼th- ,p- th-½ iz;ksx dgk x;k gSA xzhu gkml xSl lkanz.k esa okf"kZd feJ.k esa 1 izfr’kr dh o`f) tyok;q ifjorZu ds var% ljdkjh iSuy vkbZ- ih- lh- lh- }kjk rS;kj dh xbZ ;kstuk ls yh xbZ gSA bu iz;ksxksa ls 'krkCnh ds e/; ds nkSjku ,f’k;kbZ xzh"edkyhu ekulwu esa ik, tkus okys fof’k"V y{k.kksa esa gksus okys dqN ifjorZuksa dk irk pyk gS ftudk c<+s gq, ekuotfur mRltZdksa ds dkj.k gksuk LokHkkfor gSA lewph ekulwu _rq ds nkSjku Hkkjrh; {ks= ij fuEu {kksHk eaMy ¼850 gSDVkikLdy½ esa ekulwu nzks.kh ¼,e- Vh- ½ dk mRrj dh vksj lkekU; :i ls c<+uk lcls vf/kd egRoiw.kZ ifjorZu izrhr gksrk gSA vuqdj.k ifj.kkeksa ls ekulwu _rq ds nkSjku vjc lkxj esa leqnz Lrj nkc ¼,l- ,y- ih-½ esa yxHkx 1&2 gS- ik- dh o`f) dk irk pyk gS ftlds ifj.kkeLo:i fuEu {kksHk eaMy esa vlkekU; izfrpØokr gksrs gSaA bldk vFkZ ;g gqvk fd fuEu Lrjh; tsV ¼,y- ,y- ts-½ vkSj vjc lkxj esa ekulwu dh /kkjk det+ksj iM+ tkrh gSA ;g ekWMy m".krj leqnz lrg dh fLFkfr;ksa esa fgan egklkxj ds mRrj esa ekulwuh pØokrh; fo{kksHkksa dh vko`fr esa deh dks vuqdfjr djrk gS tks gky gh ds n’kdksa esa ekulwu ds vonkcksa dh vko`fr esa deh dh izo`fr;ksa ds vuq:i ikbZ xbZ gSA bu iz;ksxksa ls ;g irk pyrk gS fd ikfdLrku vkSj mlds lehiorhZ mRrjh if’peh Hkkjr ds Åij Å"ek fuEunkc rhoz gks ldrk gS vkSj ekulwu _rq           ds nkSjku FkksM+k iwoZ dh vksj c<+ ldrh gSA ;g ekWMy] Hkkjrh; leqnz ds nf{k.kh Hkkxksa esa 8° & 10° m- ds chp 100 gS- ik- ¼Vh- bZ- ts- dksj dk Lrj½ ij fo’ks"kdj ekulwu ds iwokZ)Z ds nkSjku m".kdfVca/kh; iwokZfHkeq[kh tsV¼Vh- bZ- ts-½ dks izHkkfor djrk gSA The paper presents the results of simulation experiments aimed at predicting the characteristic features of Asian Summer Monsoon during the middle of the century (2041-60) resulting from global climate change. The model used is HadRM2 regional climate model of the Hadley Centre for Climate Prediction and Research, UK. Two simulation experiments of 20 years length have been performed for the Asian domain, namely, one with a fixed amount of greenhouse gas concentration corresponding to 1990 levels called the 'control' (CTL) experiment and the other with the annual compound increase of 1 % in the greenhouse gas concentration for 2041-60 from 1990 onwards called the 'greenhouse gas' (GHG) experiment. The annual compound increment of 1 %, in the greenhouse gas concentration has been adopted from the projection given by the Intergovernmental Panel for Climate Change (IPCC). The experiments have brought out some of the changes in the characteristic features of mid-century Asian summer monsoons that are expected to occur due to increased anthropogenic emissions. The most significant change seems to be a general northward shift of the monsoon trough (MT) in the lower troposphere (850 hPa) throughout the monsoon season over the Indian region. The simulation results have shown an increase of about 1-2 hPa in the sea level pressure (SLP) over the Arabian Sea during the monsoon resulting in an anomalous anticyclone over there in the lower troposphere. This would mean the weakening of Low Level Jet (LLJ) and the Arabian sea branch of the monsoon current. The model has simulated a decrease in the frequency of the monsoonal cyclonic disturbances over the north Indian Ocean under the warmer sea surface conditions which conforms to the observed decreasing trends in the frequency of monsoon depressions in recent decades. The experiments have shown that the Heat Low over Pakistan and adjoining northwest India, may intensify and shift slightly eastward during the monsoon. The model has simulated the strengthening of Tropical Easterly Jet (TEJ) at          100 hPa (the location of TEJ core ) over the southern parts of Indian sea between 8° - 10° N, especially during the first half of the monsoon season.


2021 ◽  
Author(s):  
Jonathan Meyer ◽  
Shih-Yu (Simon) Wang ◽  
Robert Gillies ◽  
Jin-Ho Yoon

&lt;p&gt;The western U.S. precipitation climatology simulated by the NA-CORDEX regional climate model ensembles are examined to evaluate the capability of the 0.44&lt;sup&gt;&amp;#176; &lt;/sup&gt;and 0.22&lt;sup&gt;&amp;#176; &lt;/sup&gt;resolution&lt;sup&gt;&lt;/sup&gt;ensembles to reproduce 1) the annual and semi-annual precipitation cycle of several hydrologically important western U.S. regions and 2) localized seasonality in the amount and timing of precipitation. Collectively, when compared against observation-based gridded precipitation, NA-CORDEX RCMs driven by ERA-Interim reanalysis at the higher resolution 0.22&lt;sup&gt;&amp;#176; &lt;/sup&gt;domain resolution dramatically outperformed the 0.44&lt;sup&gt;&amp;#176;&lt;/sup&gt; ensemble over the 1950-2005 historical periods. Furthermore, the ability to capture the annual and semi-annual modes of variability was starkly improved in the higher resolution 0.22&amp;#176; ensemble. The higher resolution members reproduced more consistent spatial patterns of variance featuring lower errors in magnitude&amp;#8212;especially with respect to the winter-summer and spring-fall seasonality. A great deal of spread in model performance was found for the semi-annual cycles, although the higher-resolution ensemble exhibited a more coherent clustering of performance metrics. In general, model performance was a function of which RCM was used, while future trend scenarios seem to cluster around which GCM was downscaled.&lt;/p&gt;&lt;p&gt;&lt;br&gt;Future projections of precipitation patterns from the 0.22&amp;#176; NA-CORDEX RCMs driven by the RCP4.5 &amp;#8220;stabilization scenario&amp;#8221; and the RCP8.5 &amp;#8220;high emission&amp;#8221; scenario were analyzed to examine trends to the &amp;#8220;end of century&amp;#8221; (i.e. 2050-2099) precipitation patterns. Except for the Desert Southwest&amp;#8217;s spring season, the RCP4.5 and RCP8.5 scenarios show a consensus change towards an increase in winter and spring precipitation throughout all regions of interest with the RCP8.5 scenario containing a greater number of ensemble members simulating greater wetting trends. The future winter-summer mode of variability exhibited a general consensus towards increasing variability with greatest change found over the region&amp;#8217;s terrain suggesting a greater year-to-year variability of the region&amp;#8217;s orographic response to the strength and location of the mid-latitude jet streams and storm track. Increasing spring-fall precipitation variability suggests an expanding influence of tropical moisture advection associated with the North American Monsoon, although we note that like many future monsoon projections, a spring &amp;#8220;convective barrier&amp;#8221; was also apparent in the NA-CORDEX ensembles.&lt;/p&gt;


Author(s):  
Kerry H. Cook

Accurate projections of climate change under increasing atmospheric greenhouse gas levels are needed to evaluate the environmental cost of anthropogenic emissions, and to guide mitigation efforts. These projections are nowhere more important than Africa, with its high dependence on rain-fed agriculture and, in many regions, limited resources for adaptation. Climate models provide our best method for climate prediction but there are uncertainties in projections, especially on regional space scale. In Africa, limitations of observational networks add to this uncertainty since a crucial step in improving model projections is comparisons with observations. Exceeding uncertainties associated with climate model simulation are uncertainties due to projections of future emissions of CO2 and other greenhouse gases. Humanity’s choices in emissions pathways will have profound effects on climate, especially after the mid-century.The African Sahel is a transition zone characterized by strong meridional precipitation and temperature gradients. Over West Africa, the Sahel marks the northernmost extent of the West African monsoon system. The region’s climate is known to be sensitive to sea surface temperatures, both regional and global, as well as to land surface conditions. Increasing atmospheric greenhouse gases are already causing amplified warming over the Sahara Desert and, consequently, increased rainfall in parts of the Sahel. Climate model projections indicate that much of this increased rainfall will be delivered in the form of more intense storm systems.The complicated and highly regional precipitation regimes of East Africa present a challenge for climate modeling. Within roughly 5º of latitude of the equator, rainfall is delivered in two seasons—the long rains in the spring, and the short rains in the fall. Regional climate model projections suggest that the long rains will weaken under greenhouse gas forcing, and the short rains season will extend farther into the winter months. Observations indicate that the long rains are already weakening.Changes in seasonal rainfall over parts of subtropical southern Africa are observed, with repercussions and challenges for agriculture and water availability. Some elements of these observed changes are captured in model simulations of greenhouse gas-induced climate change, especially an early demise of the rainy season. The projected changes are quite regional, however, and more high-resolution study is needed. In addition, there has been very limited study of climate change in the Congo Basin and across northern Africa. Continued efforts to understand and predict climate using higher-resolution simulation must be sustained to better understand observed and projected changes in the physical processes that support African precipitation systems as well as the teleconnections that communicate remote forcings into the continent.


2019 ◽  
Vol 32 (5) ◽  
pp. 1411-1418 ◽  
Author(s):  
Lorenzo M. Polvani ◽  
Katinka Bellomo

It is widely appreciated that ozone-depleting substances (ODS), which have led to the formation of the Antarctic ozone hole, are also powerful greenhouse gases. In this study, we explore the consequence of the surface warming caused by ODS in the second half of the twentieth century over the Indo-Pacific Ocean, using the Whole Atmosphere Chemistry Climate Model (version 4). By contrasting two ensembles of chemistry–climate model integrations (with and without ODS forcing) over the period 1955–2005, we show that the additional greenhouse effect of ODS is crucial to producing a statistically significant weakening of the Walker circulation in our model over that period. When ODS concentrations are held fixed at 1955 levels, the forcing of the other well-mixed greenhouse gases alone leads to a strengthening—rather than weakening—of the Walker circulation because their warming effect is not sufficiently strong. Without increasing ODS, a surface warming delay in the eastern tropical Pacific Ocean leads to an increase in the sea surface temperature gradient between the eastern and western Pacific, with an associated strengthening of the Walker circulation. When increasing ODS are added, the considerably larger total radiative forcing produces a much faster warming in the eastern Pacific, causing the sign of the trend to reverse and the Walker circulation to weaken. Our modeling result suggests that ODS may have been key players in the observed weakening of the Walker circulation over the second half of the twentieth century.


2017 ◽  
Author(s):  
Olaf Morgenstern ◽  
Hideharu Akiyoshi ◽  
Yousuke Yamashita ◽  
Douglas E. Kinnison ◽  
Rolando R. Garcia ◽  
...  

Abstract. Ozone fields simulated for the Chemistry-Climate Model Initiative (CCMI) will be used as forcing data in the 6th Coupled Model Intercomparison Project (CMIP6). Here we assess, using reference and sensitivity simulations produced for phase 1 of CCMI, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances (ODSs), and a combination of carbon dioxide and other greenhouse gases (GHGs). We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. The likely cause of this is lower-stratospheric transport and dynamical responses exhibiting substantial inter-model differences. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings.


2009 ◽  
Vol 22 (13) ◽  
pp. 3838-3855 ◽  
Author(s):  
H. G. Hidalgo ◽  
T. Das ◽  
M. D. Dettinger ◽  
D. R. Cayan ◽  
D. W. Pierce ◽  
...  

Abstract This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow “center” timing (the day in the “water-year” on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using the observations together with a set of global climate model simulations and a hydrologic model (applied to three major hydrological regions of the western United States—the California region, the upper Colorado River basin, and the Columbia River basin), it is found that the observed trends toward earlier “center” timing of snowmelt-driven streamflows in the western United States since 1950 are detectably different from natural variability (significant at the p &lt; 0.05 level). Furthermore, the nonnatural parts of these changes can be attributed confidently to climate changes induced by anthropogenic greenhouse gases, aerosols, ozone, and land use. The signal from the Columbia dominates the analysis, and it is the only basin that showed a detectable signal when the analysis was performed on individual basins. It should be noted that although climate change is an important signal, other climatic processes have also contributed to the hydrologic variability of large basins in the western United States.


Sign in / Sign up

Export Citation Format

Share Document