The population dynamics of microparasites and their invertebrate hosts

We show how directly transmitted microparasites, broadly defined to include viruses, bacteria, protozoans and fungi, may regulate natural populations of invertebrate hosts. The study combines elements of conventional epidemiology (where the host population is assumed constant) with elements of prey-predator studies (which conventionally emphasize how prey and predator populations may be regulated by their interaction). To this end, we construct simple models embodying the essentials of the dynamical interaction between invertebrate hosts and their directly transmitted microparasites. In successive refinements, these models include the effects of recovery and disease-induced mortality, castration or diminished reproduction of infected hosts, vertical transmission, latent periods of infection, stress-related pathogenicity, the interplay between disease and other density-dependent constraints on host population growth, and free-living infective stages. In analysing the dynamical behaviour of these models, we focus on : the possible regulation of the host population by the parasite; the basic reproductive rate of the parasite, and the way in which it affects the dynamics and the evolution of the host-parasite association; and the threshold host density and its implications for endemic or epidemic maintenance of the infection. These are examined in the light of synoptic compilations of field and laboratory data on: birth rates (and disease-induced reduction thereof), natural death rates and disease-induced death rates of hosts; latent periods and efficiencies of vertical transmission of pathogens; the rate of production and lifetime of free-living infective stages; and some characteristics of long-term cycles and of epidemic outbreaks of disease in forest insects. In particular, our models suggest that the baculovirus and microsporidian infections of many temperate forest insects will tend to produce stable cycles in host abundance and in prevalence of infection, with periods in the range 5-12 years. Enough is known about the European larch budmoth and an associated granulosis virus for us to undertake a detailed comparison between theory and data that strongly suggests that the observed 9-10 year cycles are driven by the host-parasite interaction. We also discuss the possible control of invertebrate pest species by pathogens, showing how our models could guide laboratory or field studies, to help estimate whether a given pathogen is capable of regulating the target pest population, and, if so, roughly what quantity is needed to effect a specific level of (local) control. Throughout, the emphasis is on the biological ingredients of the models, and on the biological conclusions to be drawn; mathematical details are given in appendixes.

2008 ◽  
Vol 5 (25) ◽  
pp. 919-928 ◽  
Author(s):  
Sabrina Gaba ◽  
Sébastien Gourbière

The life cycle of many endoparasites can be delayed by free-living infective stages and a developmental arrestment in the host referred to as hypobiosis. We investigated the effects of hypobiosis and its interaction with delay in the free-living stages on host–parasite population dynamics by expanding a previous attempt by Dobson & Hudson. When the parasite life cycle does not include free-living stages, hypobiosis destabilizes the host–parasite interactions, irrespective of the assumptions about the regulation of the host population dynamics. Interestingly, the destabilizing effect varies in a nonlinear way with the duration of hypobiosis, the maximal effect being expected for three to five months delay. When the parasite life cycle involves free-living stages, hypobiosis of short or intermediate duration increases the destabilizing effect of the first time delay. However, hypobiosis of a duration of five months or more can stabilize interactions, irrespective of the regulation of the host population dynamics. Overall, we confirmed that hypobiosis is an unusual time delay as it can stabilize a two-way interaction. Contrary to the previous conclusions, such an atypical effect does not require self-regulation of the host population, but instead depends on the existence of free-living stages.


2017 ◽  
Vol 10 (04) ◽  
pp. 1750047
Author(s):  
Xuerui Wei ◽  
Zhipeng Qiu

Understanding the dynamical mechanism of the host–parasite interactions is one of important issues on host–parasite association. In this paper, we formulate a three-dimensional host–macroparasite system to describe the host–parasite interactions, which includes the logistic growth rate of host population, the important free-living stage and the host fecundity reduction due to parasite infection. The purpose of the paper is to investigate the asymptotical behavior of the system. By using the properties of the solution to non-autonomous linear system, the basic production number [Formula: see text] is proved to be a threshold which determines the outcome of the parasites. If [Formula: see text], the parasite will eventually die out, and if [Formula: see text] the parasite will be uniformly persistent. Hopf bifurcation of the system is further studied, and sufficient conditions for the Hopf bifurcation are obtained. By using the singular perturbation techniques, the system is separated into two time scales with a faster time scale for the free-living infective particles and a slower time scale for the population dynamics of host and parasite, and then a complete analysis of the dynamics on the slow manifold is conducted. The theoretical results show that the level of aggregation of parasites within host may influence the persistence and stability of the system.


1991 ◽  
Vol 65 (1) ◽  
pp. 1-7 ◽  
Author(s):  
J. de Bont ◽  
J. Vercruysse ◽  
D. van Aken ◽  
V. R. Southgate ◽  
D. Rollinson

ABSTRACTInfectivity and cercarial production of Indoplanorbis exustus related to variation of miracidial dose (1, 4, 10 or 20) with Schistosoma nasale and S. spindale from Sri Lanka were studied. The intermediate host-parasite relationships of the two schistosome species showed marked differences under the conditions of observation recorded in this study. Prepatent death rates (PDR) were on average higher for S. spindale (30%) than for S. nasale (10%). The size of the miracidial dose to which snails had been exposed had no effect on PDR. The infection rates (IR) were on average higher for S. nasale (41%) compared with S. spindale (27%). Highest IR occurred after exposure to 4 miracidia in S. nasale infections (79%) and after exposure to 10 miracidia in S. spindale infections (6O%). The highest daily average cercarial production per snail was recorded for S. nasale at a level of 4 miracidia (1311), and for S. spindale at a level of 10 miracidia (1615). At low level (1 or 4 miracidia) of exposure, I. exustus showed a better compatibility with S. nasale than with S. spindale. An opposite tendency was observed at higher levels (10 or 20 miracidia) of exposure. Unsuccessful infections of Lymnaea luteola with either S. nasale or S. spindale indicate that this species is not involved in transmission.


Parasitology ◽  
1974 ◽  
Vol 68 (2) ◽  
pp. 271-284 ◽  
Author(s):  
A. E. Rumpus ◽  
C. R. Kennedy

The respiration rates of individual Gammarus pulex infected by larval Pomphorhynchus laevis were investigated with particular reference to the stage of development of the host and parasite and to the water temperature. At 20°C the oxygen consumption of Gammarus of all sizes was reduced by an average of 19·3 % by the presence of cystacanths of the parasite, but was unaffected by the presence of acanthellae. It is considered that the small size of this larval stage, in relation to that of its host, is responsible for the failure to detect an effect. Multiple infections did not exert any greater effect upon host respiration than single cystacanths, nor did it appear that the parasite had different effects upon hosts of different sexes. At 10°C no significant differences were observed between the respiration rates of infected and uninfected gammarids. The parasite was probably still depressing the host respiration rate at this temperature, but the oxygen uptake of G. pulex is so low that the differences between infected and uninfected individuals were too small to be detected. The parasite has a direct effect upon the physiological processes of the host, but neither the mechanism of this nor the reasons for the different effects found in different host-parasite systems are yet understood. Despite the pronounced effect of P. laevis on respiration of individual hosts, its effect upon the oxygen consumption of a natural host population is small since only a small proportion of the population carries infections and water temperatures remain below 10°C for over half the year.


2001 ◽  
Vol 79 (4) ◽  
pp. 554-561 ◽  
Author(s):  
Shawn Meagher ◽  
Timothy P O'Connor

The effects of parasites on their hosts can vary among host populations, but few studies have examined geographic variation in host-parasite interactions. We examined the effects of Capillaria hepatica (Nematoda) infection on deer mice (Peromyscus maniculatus gracilis) from two different populations. Specifically, we measured the basal metabolic rate (BMR), cold-stress maximum oxygen consumption (MRpeak), metabolic scope (MRpeak/BMR), and thermogenic endurance of infected and uninfected mice from one population with, and a second population without, a history with C. hepatica. Infection had no effect on BMR, but did have effects on cold-stress measures. A previous study documented a significant relationship between survival and MRpeak in wild deer mice; hence, the effects of infection on the parameters that we measured could influence fitness. Only mice that had no historical association with C. hepatica displayed negative consequences of infection, which suggests that the historical host population has evolved mechanisms to cope with infection. Models of the evolution of virulence should include evolutionary responses of both hosts and parasites, particularly when systems involve macroparasites that have long generation times.


Parasitology ◽  
2007 ◽  
Vol 134 (6) ◽  
pp. 841-852 ◽  
Author(s):  
S. L. L. HILL ◽  
B. OKAMURA

SUMMARYThis study begins to redress our lack of knowledge of the interactions between colonial hosts and their parasites by focusing on a novel host-parasite system. Investigations of freshwater bryozoan populations revealed that infection by myxozoan parasites is widespread. Covert infections were detected in all 5 populations studied and were often at high prevalence while overt infections were observed in only 1. Infections were persistent in populations subject to temporal sampling. Negative effects of infection were identified but virulence was low. Infection did not induce mortality in the environmental conditions studied. However, the production of statoblasts (dormant propagules) was greatly reduced in bryozoans with overt infections in comparison to uninfected bryozoans. Overtly-infected bryozoans also grew more slowly and had low fission rates relative to colonies lacking overt infection. Bryozoans with covert infections were smaller than uninfected bryozoans. High levels of vertical transmission were achieved through colony fission and the infection of statoblasts. Increased fission rates may be a strategy for hosts to escape from parasites but the parasite can also exploit the fragmentation of colonial hosts to gain vertical transmission and dispersal. Our study provides evidence that opportunities and constraints for host-parasite co-evolution can be highly dependent on organismal body plans and that low virulence may be associated with exploitation of colonial hosts by endoparasites.


2018 ◽  
Vol 373 (1745) ◽  
pp. 20170101 ◽  
Author(s):  
David J. Civitello ◽  
Brent E. Allman ◽  
Connor Morozumi ◽  
Jason R. Rohr

Anthropogenic resource supplementation can shape wildlife disease directly by altering the traits and densities of hosts and parasites or indirectly by stimulating prey, competitor or predator species. We first assess the direct epidemiological consequences of supplementation, highlighting the similarities and differences between food provisioning and two widespread forms of nutrient input: agricultural fertilization and aquatic nutrient enrichment. We then review an aquatic disease system and a general model to assess whether predator and competitor species can enhance or overturn the direct effects of enrichment. All forms of supplementation can directly affect epidemics by increasing host population size or altering parasite production within hosts, but food provisioning is most likely to aggregate hosts and increase parasite transmission. However, if predators or competitors increase in response to supplementation, they could alter resource-fuelled outbreaks in focal hosts. We recommend identifying the traits of hosts, parasites or interacting species that best predict epidemiological responses to supplementation and evaluating the relative importance of these direct and indirect mechanisms. Theory and experiments should examine the timing of behavioural, physiological and demographic changes for realistic, variable scenarios of supplementation. A more integrative view of resource supplementation and wildlife disease could yield broadly applicable disease management strategies. This article is part of the theme issue ‘Anthropogenic resource subsidies and host–parasite dynamics in wildlife’.


2012 ◽  
Vol 279 (1743) ◽  
pp. 3742-3748 ◽  
Author(s):  
Benjamin J. Z. Quigley ◽  
Diana García López ◽  
Angus Buckling ◽  
Alan J. McKane ◽  
Sam P. Brown

Antagonistic coevolution between hosts and parasites can have a major impact on host population structures, and hence on the evolution of social traits. Using stochastic modelling techniques in the context of bacteria–virus interactions, we investigate the impact of coevolution across a continuum of host–parasite genetic specificity (specifically, where genotypes have the same infectivity/resistance ranges (matching alleles, MA) to highly variable ranges (gene-for-gene, GFG)) on population genetic structure, and on the social behaviour of the host. We find that host cooperation is more likely to be maintained towards the MA end of the continuum, as the more frequent bottlenecks associated with an MA-like interaction can prevent defector invasion, and can even allow migrant cooperators to invade populations of defectors.


2002 ◽  
Vol 25 (4) ◽  
pp. 249-260 ◽  
Author(s):  
C.G. Voinescu ◽  
R. Khanna

Peritonitis, an infectious complication of peritoneal dialysis, continues to account for much of the morbidity associated with this techniques. The clinical presentation and laboratory data used in diagnosis the peritonitis, as well as its differential diagnosis will be reviewed in this article. The distribution of pathogens is an important outcome determinant, Gram-negative infections being associated with greater rates of catheter loss and higher death rates. Among the five routes of peritoneal contamination, intraluminal and periluminal contamination account for most of the infections. Due to the two prevention methods implemented in the care of the PD population, the incidence of peritonitis has decreased over the last two decades. The recommendations for empiric treatment of peritonitis have changed over the years, as more was learnt about antibiotic resistance and drug toxicity. Future research to address enteric peritonitis, as well as biocompatible dialysis solution or biocompatible catheter materials is needed to further reduce the incidence of PD peritonitis.


Toxins ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 679
Author(s):  
Kyle Sozanski ◽  
Lívia Pires do Prado ◽  
Andrew J. Mularo ◽  
Victoria A. Sadowski ◽  
Tappey H. Jones ◽  
...  

Alkaloids are important metabolites found across a variety of organisms with diverse ecological functions. Of particular interest are alkaloids found in ants, organisms well known for dominating the ecosystems they dwell in. Within ants, alkaloids are found in venom and function as potent weapons against heterospecific species. However, research is often limited to pest species or species with parasitic lifestyles and thus fails to address the broader ecological function of ant venom alkaloids. Here we describe a new species of free-living Megalomyrmex ant: Megalomyrmex peetersi sp. n. In addition, we identify its singular venom alkaloid (trans-2-butyl-5-heptylpyrrolidine) and elucidate the antibiotic and insecticidal functions of its venom. Our results show that Megalomyrmex peetersi sp. n. venom is an effective antibiotic and insecticide. These results are comparable to venom alkaloids found in other ant species, such as Solenopsis invicta. This research provides great insight into venom alkaloid function, and it is the first study to explore these ideas in the Megalomyrmex system.


Sign in / Sign up

Export Citation Format

Share Document