Effects of differences in mineralization on the mechanical properties of bone

There is a considerable variation in the mineralization of bone; normal, non-pathological compact bone has ash masses ranging from 45 to 85% by mass. This range of mineralization results in an even greater range of mechanical properties. The Young modulus of elasticity can range from 4 to 32 GPa, bending strength from 50 to 300 MPa, and the work of fracture from 200 to 7000 Jm -2 . It is not possible for any one type of bone to have high values for all three properties. Very high values of mineralization produce high values of Young modulus but low values of work of fracture (which is a measure of fracture toughness). Rather low values of mineralization are associated with high values of work of fracture but low values of Young modulus and intermediate values of bending strength. The reason for the high value for the Young modulus associated with high mineralization is intuitively obvious, but has not yet been rigorously modelled. The low fracture toughness associated with high mineralization may be caused by the failure of various crack-stopping mechanisms that can act when the mineral crystals in bone have not coalesced, but which become ineffective when the volume fraction of mineral becomes too high. The adoption of different degrees of mineralization by different bones, leading to different sets of mechanical properties, is shown to be adaptive in most cases studied, but some puzzles still remain.

Coatings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 357 ◽  
Author(s):  
Xueni Zhao ◽  
Xueyan Chen ◽  
Li Zhang ◽  
Qingyao Liu ◽  
Yao Wang ◽  
...  

Uniform and dense nano-hydroxyapatite (nHA) coating with nanorod-shaped structure was fabricated on carbon nanotubes (CNTs) by combining electrodeposition with biomineralization. The CNTs with nHA coating (nHA–CNTs) were used as reinforcement to improve the mechanical properties of HA. Firstly, a mixed acid solution of nitric acid and sulfuric acid was used to treat CNTs (NS–CNTs). The dispersion of NS–CNTs was obviously improved, and O-containing functional groups were grafted on the surfaces of NS–CNTs by treatment. Then, calcium phosphate (CaP) was deposited on NS–CNTs by electrodeposition, and NS–CNTs were provided with numerous active nucleation sites for the next coating preparation process. Then nanorod-shaped HA crystals were obtained on the surfaces of NS–CNTs by biomineralization. Using the CNTs with nHA coating (nHA–CNTs) as reinforcement, HA-based composites reinforced with CNTs and nHA–CNTs (nHA–CNTs/HA) were fabricated by pressure-less process. Bending strength and fracture toughness of 1.0 wt % nHA–CNTs reinforced HA composites (HAnC1) reaches a maximum (30.77 MPa and 2.59 MPa), which increased by 26.94% and 7.02% compared with 1.0 wt % CNTs reinforced HA composites, respectively. Importantly, the fracture toughness of HAnC1 is within the range of that to compact bone. This work provides theoretical and practical guidance for preparing nHA coating on nanomaterials. It also contributes to the potential application of nHA–CNTs/HA composites for artificial bone implants.


2010 ◽  
Vol 105-106 ◽  
pp. 549-552
Author(s):  
Jie Liu ◽  
Long Quan Shao ◽  
Yuan Fu Yi ◽  
Bin Deng ◽  
Wei Wei Zhang ◽  
...  

Objective: To study the effects of presintering temperature and temperature rise speed on the physical and mechanical properties of alumina-glass-composite (AGC). Methods: AGC was prepared respectively under the condition that presintered at 1400°C and 1450°C as well as two kind of temperature rise speed. The properties were measured, including density, thermal expansion coefficient, three-point bending strength, fracture toughness, modulus of elasticity and Vicker’s hardness of AGC. Results: With the increasing of presentering temperature and the temperature rise speed, density of AGC decreased, bending strength, fracture toughness, modulus of elasticity increased markedly. There was no difference between three-point bending strength and fracture toughness of AGC that was made by two temperature rise speed to 1450°C. Bending strength of AGC that was made by lower temperature rise speed to 1400°C was the lowest. The Vicker’s hardness of the 1450°C groups was higher than that of the 1400°C groups. Conclusion: Both presintering temperature and the temperature rise speed can influenced the properties of AGC, but the effect of presintering temperature was the most.


Alloy Digest ◽  
2000 ◽  
Vol 49 (1) ◽  

Abstract Kaiser Aluminum Alloy 7050 has very high mechanical properties including tensile strength, high fracture toughness, and a high resistance to exfoliation and stress-corrosion cracking. The alloy is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: AL-366. Producer or source: Tennalum, A Division of Kaiser Aluminum.


2014 ◽  
Vol 602-603 ◽  
pp. 438-442
Author(s):  
Lei Yu ◽  
Jian Yang ◽  
Tai Qiu

Fully dense (ZrB2+ZrC)/Zr3[Al (Si)]4C6 composites with ZrB2 content varying from 0 to 15 vol.% and fixed ZrC content of 10 vol.% were successfully prepared by in situ hot-pressing in Ar atmosphere using ZrH2, Al, Si, C and B4C as raw materials. With the increase of ZrB2 content, both the bending strength and fracture toughness of the composites increase and then decrease. The synergistic action of ZrB2 and ZrC as reinforcements shows significant strengthening and toughing effect to the Zr3[Al (Si)]4C6 matrix. The composite with 10 vol.% ZrB2 shows the optimal mechanical properties: 516 MPa for bending strength and 6.52 MPa·m1/2 for fracture toughness. With the increase of ZrB2 content, the Vickers hardness of the composites shows a near-linear increase from 15.3 GPa to 16.7 GPa. The strengthening and toughening effect can be ascribed to the unique mechanical properties of ZrB2 and ZrC reinforcements, the differences in coefficient of thermal expansion and modulus between them and Zr3[Al (Si)]4C6 matrix, fine grain strengthening and uniform microstructure derived by the in situ synthesis reaction.


2013 ◽  
Vol 589-590 ◽  
pp. 590-593 ◽  
Author(s):  
Min Wang ◽  
Jun Zhao

In order to investigate the effects of TiN content on Al2O3/TiN ceramic material (ATN), the ATN ceramic materials were prepared of TiN content in 30%, 40%, 50%, 60% in the condition of hot press sintering. The sintering temperature is 1700°C, the sintering press is 32MPa, and the holding time are 5min, 10min, 15min. The effects of TiN content on mechanical properties and microstructure of ATN ceramic materials were investigated by analyzing the bending strength, hardness, fracture toughness. The results show that ATN50 has the best mechanical property, its bending strength is 659.41MPa, vickers hardness is 13.79GPa, fracture toughness is 7.06MPa·m1/2. It is indicated that the TiN content has important effect on microstructure and mechanical properties of ATN ceramic materials.


2014 ◽  
Vol 616 ◽  
pp. 27-31 ◽  
Author(s):  
Tomohiro Kobayashi ◽  
Katsumi Yoshida ◽  
Toyohiko Yano

The CNT/B4C composite with Al2O3 additive was fabricated by hot-pressing following extrusion molding of a CNT/B4C paste, and mechanical properties of the obtained composite were investigated. Many CNTs in the composite aligned along the extrusion direction from SEM observation. 3-points bending strength of the composite was slightly lower than that of the monolithic B4C. Elastic modulus and Vickers hardness of the composite drastically decreased with CNT addition. Fracture toughness of the composite was higher than that of the monolithic B4C.


2002 ◽  
Vol 34 (3) ◽  
pp. 223-229 ◽  
Author(s):  
O.I. Getman ◽  
V.V. Holoptsev ◽  
V.V. Panichkina ◽  
I.V. Plotnikov ◽  
V.K. Soolshenko

The mechanical properties and microstructure formation processes in Si3N4+3% AI2O3+5% Y2O3(Yb2O3) ceramic compacts sintered under microwave heating (MWH) and under traditional heating (TH) were investigated. The initial ceramic materials were powder blends of silicon nitride with oxides. The mean powder particle sizes were 0.5-1.0 mim. The content of alfa-phase in the Si3N4 powder was more than 95 %. The samples were sintered at 1800BC in nitrogen at normal pressure, the heating rate in all experiments was 60BC/min. The Vickers hardness (HV), fracture toughness (K1C) and bending strength (on) were determined. The microstructures of fracture surfaces of samples were studied by SEM. Quantitative microstructure analysis was carried out. It was shown that the values of HV and Kic of ceramic samples sintered under MWH at 1800BC rose steadily with the sintering time. This caused an increase in density, which reached maximum as fast as after 30 min of the MWH sintering; the mass loss at that time amounted to 3-4 %. The porosity of sintered samples with an addition of yttria was less than 1 %, that of ytterbia was greater, 2.4 %. For similar values of relative density, the hardness and fracture toughness of ceramic samples produced under MWH were higher as compared with those of samples sintered under TH. The microstructure of samples had the form of elongated grains in a matrix of polyhedral grains of the beta-Si3N4 phase. Measurements showed the mean size of grains in samples produced by MWH to be greater that in samples produced by TH. A larger number of elongated grains were formed. It was concluded that for sintering under MWH of Si3N4-based ceramics the growth of elongated beta-Si3N4 grains and formation of a "reinforced" microstructure were promoted and thereby improved the mechanical properties of such ceramics.


2020 ◽  
Vol 26 ◽  
pp. 45-49
Author(s):  
Jiří Němeček ◽  
Jiří Němeček

In this study, the micromechanical response of two cementitious composites was characterized by nanoindentation. Pure Portland cement paste and Portland cement with 50 vol. % replaced with granulated blast furnace slag (GBFS) paste were investigated at the age of 28 days. Grid nanoindentation, statistical deconvolution and scanning electron microscopy were used to characterize the main hydration products. Several grids with approximately 500 indents on each sample were performed to obtain modulus of elasticity, hardness and creep indentation parameter. Similar mechanical phases containing calcium silica hydrate, crystalline calcium hydroxide and un-hydrated clinker were found in both samples varying by volume fraction. Blended cement, moreover, contains a phase of slag hydration products with a significantly lower modulus of elasticity. This phase with a high portion of unreacted GBFS is mostly responsible for the difference of mechanical properties of the whole composite.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2799
Author(s):  
Awais Qadir ◽  
Péter Pinke ◽  
Ján Dusza

In this overview, the results published to date concerning the development, processing, microstructure characteristics, and properties of silicon nitride/carbon nanotube (Si3N4 + CNTs) composites are summarized. The influence of the different processing routes on the microstructure development of the Si3N4 + CNTs is discussed. The effects of the CNTs addition on the mechanical properties—hardness, bending strength and fracture toughness—and tribological characteristics—wear rate and coefficient of friction—are summarized. The characteristic defects, fracture origins, toughening and damage mechanisms occurring during the testing are described. The influence of the CNTs’ addition on the thermal and functional properties of the composites is discussed as well. New trends in the development of these composites with significant potential for future applications are outlined.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1750 ◽  
Author(s):  
Radosław Mirski ◽  
Pavlo Bekhta ◽  
Dorota Dziurka

This study examined the effects of selected types of thermoplastics on the physical and mechanical properties of polymer-triticale boards. The investigated thermoplastics differed in their type (polypropylene (PP), polyethylene (PE), polystyrene (PS)), form (granulate, agglomerate) and origin (native, recycled). The resulting five-ply boards contained layers made from different materials (straw or pine wood) and featured different moisture contents (2%, 25%, and 7% for the face, middle, and core layers, respectively). Thermoplastics were added only to two external layers, where they substituted 30% of straw particles. This study demonstrated that, irrespective of their type, thermoplastics added to the face layers most favorably reduced the hydrophobic properties of the boards, i.e., thickness, swelling, and V100, by nearly 20%. The bending strength and modulus of elasticity were about 10% lower in the experimental boards than in the reference ones, but still within the limits set out in standard for P7 boards (20 N/mm2 according to EN 312).


Sign in / Sign up

Export Citation Format

Share Document