scholarly journals Cytological and molecular evidence that the whitefly-transmitted Cucumber vein yellowing virus is a tentative member of the family Potyviridae

2000 ◽  
Vol 81 (9) ◽  
pp. 2289-2293 ◽  
Author(s):  
H. Lecoq ◽  
C. Desbiez ◽  
B. Delécolle ◽  
S. Cohen ◽  
A. Mansour

Cucumber vein yellowing virus (CVYV) is widespread in cucurbits in the Middle East. CVYV has filamentous particles and is transmitted by Bemisia tabaci by the semi-persistent mode. It has not yet been assigned to a specific genus or family. Ultramicroscopic observations revealed numerous cylindrical cytoplasmic inclusions in melon and cucumber cells infected by CVYV isolates from Israel and Jordan. Depending on the section orientation, the inclusions appeared as pinwheels or as bundles. In addition, a 1·9 kb DNA fragment was amplified by RT–PCR from CVYV-infected plant extracts using primers designed to detect all potyvirids. Sequence comparisons with the amplified fragment indicated that CVYV is more closely related to Sweet potato mild mottle virus than to any other virus in the family Potyviridae. These results suggest that CVYV can be considered as a tentative new member of the genus Ipomovirus, family Potyviridae.

Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1113-1113 ◽  
Author(s):  
K. Bananej ◽  
C. Desbiez ◽  
M. Girard ◽  
C. Wipf-Scheibel ◽  
I. Vahdat ◽  
...  

Several viral diseases are responsible for significant economic losses in commercial cucurbit production worldwide. During a survey conducted in July 2002 in cucurbit growing areas in southern Iran, vein-clearing symptoms and leaf chlorosis on older leaves were observed on a cucumber plant near Jiroft (Kerman Province). These symptoms were similar to those caused by Cucumber vein yellowing virus (CVYV, genus Ipomovirus, family Potyviridae), a virus first described in Israel (1) and now widespread in cucurbit crops in the Middle East and Mediterranean Regions (2). The identification of CVYV was established through differential host range reaction and immunosorbent electron microscopy (IEM) experiments. Typical vein-clearing symptoms were observed following mechanical inoculation of cucumber and melon plantlets, but no symptoms were observed in Chenopodium quinoa, C. amaranticolor, Nicotiana tabacum, or Vigna sinensis. Numerous, slightly flexuous, elongated virus particles were observed in infected plant extracts. The particles were decorated by a polyclonal antiserum raised against a Sudanese isolate of CVYV. To confirm CVYV identification, total RNA extracts (TRI-Reagent, Sigma Chemical, St. Louis, MO) were obtained from the original cucumber sample. Reverse transcription-polymerase chain reactions (RT-PCR) were carried out using CVYV-specific primers CVYV-CP-5′: 5′-GCTTCTGGTTCTCAAGTGGA-3′ and CVYV-CP-3′: 5′-GATGCATCAGTTGTCAGATG-3′ designed according to the partial sequence of the coat protein gene of CVYV-Isr (GenBank Accession No. AF233429) (2). A 540-bp fragment corresponding to the central region of CVYV coat protein was obtained from extracts of infected plants but not from healthy plant extracts. Additional watermelon (n = 6) and melon (n = 4) leaf samples collected from plants growing in the same farm were tested for the presence of CVYV using RT-PCR. All samples reacted positively for CVYV. However, a sample of Citrullus colocynthis, a wild relative of watermelon growing nearby, was negative. CVYV was not detected using RT-PCR in 123 additional cucurbit samples collected from the eastern and central regions of Iran during a survey conducted in 2002. To our knowledge, this is the first report of the occurrence of CVYV in Iran. Additional surveys in southern regions where Bemisia tabaci, the vector of CVYV, is abundant are required to better estimate the prevalence of this virus in cucurbit crops in Iran. References: (1) S. Cohen and F. E. Nitzany. Phytopathol. Mediterr. 1:44, 1960 (2) H. Lecoq et al. J. Gen. Virol. 81:2289, 2000.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 149-149 ◽  
Author(s):  
C. R. Adkar-Purushothama ◽  
H. Nagaraja ◽  
M. Y. Sreenivasa ◽  
T. Sano

Members of the genus Coleviroid (Coleus blumei viroid [CbVd]), family Pospiviroidae have been reported to infect Coleus (Solenostemon sp.). CbVd-1 was first reported from Brazil, CbVd-2, -3, and -4 were first reported from Germany, whereas CbVd-5 and -6 were recently identified in China (2). In India, Coleus is extensively cultivated as an ornamental plant in home gardens. In March to June 2012, Coleus leaf samples with irregular chlorotic spots/patches were collected from home gardens of two different districts of Karnataka (Kodagu and Mysore districts), India, suspecting the presence of Coleus blumei viroids (CbVd 1 to 6). Low molecular weight RNAs were extracted using 2% CTAB buffer containing 1.4 M NaCl, 20 mM EDTA, pH 8.0 and 100 mM Tris-Cl, pH 8.0 (1). Viroid-like RNA was enriched by fractionation 2M LiCl soluble nucleic acids (4). A DNA fragment with the expected size of CbVd-1 was detected in 10 (including both districts) of 14 analyzed (incident rate of 71%) from reverse transcription (RT)-PCR assay using Coleviroid specific primers (forward 5′-TGGATCCAGCGCTGCAACGGAATCCA-3′ and reverse 5′-TTGGATCCGCCAGGGAACCCAGGTAAG-3′). RT was performed at 37°C for 60 min in 25 μl reaction mix containing 5 μl RNA extracts, 1 μl reverse primer, 1× first strand buffer, 10 mM dNTPs, and 200U M-MuLV-RT (Invitrogen, USA). For PCR, 2 μl RT was mixed in 25 μl PCR mix containing 0.2 μM each forward and reverse primers and 2U LA Taq (Takara-Bio, Japan) according to the manufacturer's instruction. PCR parameter was one cycle at 94°C for 2 min, 35 cycles at 94°C for 45 s, 53°C for 30 s, and 72°C for 60 s, followed by final extension at 72°C for 10 min (4). Sequence analysis of cloned amplicons detected CbVd-1 in India. To confirm the sequence of the primer regions, an additional set of tail-tail primers were designed, CbVd1-136F (5′-CTTCGTGGAACGGCTCCGCG-3′) and CbVd1-136Rev (5′-GAAGAAGCCGAAGCAACTCTC-3′) and were used for RT-PCR. Amplified products were cloned, sequenced and compared with previously obtained data. Further, the presences of CbVd-1 in Coleus samples was confirmed by a RNA gel blot assay using digoxigenin-labeled CbVd-1 cRNA probe (3). Alignment of 19 sequences obtained from four representative Coleus samples found the presence of two sequence variants of CbVd-1, namely Ind-1 (GenBank Accession No. AB740017) and Ind-2 (AB740018). Ind-1 was found to differ from Ind-2 by two nucleotide substitutions at position 40 (C to T) and 211 (T to C). BLAST analysis of Ind-1 showed 100% sequence similarity with CbVd-1 isolates from China (DQ178399) and South Korea (EU 410620), whereas Ind-2 was 99% identical to these two Chinese and Koreans isolates. Furthermore, 97% and 96% sequence identity with CbVd 1-RL RNA (Accession no. X95366) was observed for Ind-1 and Ind-2, respectively. Isolates from India were 88% similar with Coleus blumei viroid 1-RG (X95291). To the best of our knowledge, this is the first molecular evidence for the presence of CbVd-1 infecting Coleus in India. Coleus harbors various viroid species and CbVd-1, reported widely, can transmit efficiently through seed and also could infect the other herbaceous plants (3). This report from India will contribute further understanding of a potential risk of Coleus viroids in ornamental species. References: (1) J. J. Doyle and J. L. Doyle. Phytochem. Bull. 19:11, 1987. (2) F. H. Fu et al. Plant Dis. 95:494, 2011. (3) Ishiguro et al. Ann. Phytopathol. Soc. Jpn. 62:84, 1996. (4) S.-F. Li et al., Plant Pathol. 55:565, 2006.


Plant Disease ◽  
2007 ◽  
Vol 91 (7) ◽  
pp. 909-909 ◽  
Author(s):  
H. Lecoq ◽  
O. Dufour ◽  
C. Wipf-Scheibel ◽  
M. Girard ◽  
A. C. Cotillon ◽  
...  

During the fall of 2003, mild mosaic symptoms were observed in melon (Cucumis melo L.) plants grown in glasshouses near Eyragues (southeastern France) resembling those caused by the Bemisia tabaci transmitted Cucumber vein yellowing virus (CVYV, genus Ipomovirus, family Potyviridae). In addition, large numbers of B. tabaci were observed to be colonizing these crops. The identification of CVYV was established through differential host range reaction, immunosorbent electron microscopy (IEM), and reverse transcription (RT)-PCR experiments. Crude sap from symptomatic leaves was used to inoculate differential host plants. Mild mosaic symptoms were observed on melon, and cucumber developed vein-clearing symptoms typical of CVYV. No symptoms were observed in Chenopodium quinoa, C. amaranticolor, Nicotiana benthamiana, N. tabacum, and Vigna sinensis. Numerous, slightly flexuous, elongated virus particles were observed in infected plant extracts; these particles were decorated by a polyclonal antiserum raised against a Sudanese CVYV isolate. To confirm CVYV identification, total RNA extracts (TRI-Reagent, Sigma Chemical, St. Louis, MO) were obtained from the original symptomatic melon tissues. RT-PCR was carried out using CVYV-specific primers CVYV-CP-5′: 5′-GCTTCTGGTTCTCAAGTGGA-3′ and CVYV-CP- 3′: 5′-GATGCATCAGTTGTCAGATG-3′ designed according to the partial sequence of the coat protein gene of CVYV-Isr (GenBank Accession No. AF233429) (2). A 540-bp fragment corresponding to the central region of CVYV coat protein was amplified from total RNA extracted from symptomatic but not from asymptomatic melon tissue. Direct sequencing was done on RT-PCR products (GenBank Accession No. EF441272). The sequence was 95 and 99% identical to that reported for CVYV isolates from Israel and Spain, respectively. CVYV was first described in Israel and has recently emerged as the cause of important diseases in Spain and Portugal (1,3). Shortly after detecting CVYV during 2003, efforts were made to eradicate the virus in susceptible crops. CVYV was not detected again during intensive surveys conducted in southeastern France during 2004, 2005, and 2006, suggesting that the CVYV detected during 2003 resulted from an accidental introduction and that the virus has not become established in France. References: (1) I. M. Cuadrado et al. Plant Dis. 85:336, 2001. (2) H. Lecoq et al. J. Gen. Virol. 81:2289, 2000. (3) D. Louro et al. Plant Pathol. 53:241, 2004.


2020 ◽  
Vol 110 (1) ◽  
pp. 106-120 ◽  
Author(s):  
Avijit Roy ◽  
Andrew L. Stone ◽  
Gabriel Otero-Colina ◽  
Gang Wei ◽  
Ronald H. Brlansky ◽  
...  

The genus Dichorhavirus contains viruses with bipartite, negative-sense, single-stranded RNA genomes that are transmitted by flat mites to hosts that include orchids, coffee, the genus Clerodendrum, and citrus. A dichorhavirus infecting citrus in Mexico is classified as a citrus strain of orchid fleck virus (OFV-Cit). We previously used RNA sequencing technologies on OFV-Cit samples from Mexico to develop an OFV-Cit–specific reverse transcription PCR (RT-PCR) assay. During assay validation, OFV-Cit–specific RT-PCR failed to produce an amplicon from some samples with clear symptoms of OFV-Cit. Characterization of this virus revealed that dichorhavirus-like particles were found in the nucleus. High-throughput sequencing of small RNAs from these citrus plants revealed a novel citrus strain of OFV, OFV-Cit2. Sequence comparisons with known orchid and citrus strains of OFV showed variation in the protein products encoded by genome segment 1 (RNA1). Strains of OFV clustered together based on host of origin, whether orchid or citrus, and were clearly separated from other dichorhaviruses described from infected citrus in Brazil. The variation in RNA1 between the original (now OFV-Cit1) and the new (OFV-Cit2) strain was not observed with genome segment 2 (RNA2), but instead, a common RNA2 molecule was shared among strains of OFV-Cit1 and -Cit2, a situation strikingly similar to OFV infecting orchids. We also collected mites at the affected groves, identified them as Brevipalpus californicus sensu stricto, and confirmed that they were infected by OFV-Cit1 or with both OFV-Cit1 and -Cit2. OFV-Cit1 and -Cit2 have coexisted at the same site in Toliman, Queretaro, Mexico since 2012. OFV strain-specific diagnostic tests were developed.


Genetics ◽  
2000 ◽  
Vol 155 (3) ◽  
pp. 1105-1117 ◽  
Author(s):  
W John Haynes ◽  
Kit-Yin Ling ◽  
Robin R Preston ◽  
Yoshiro Saimi ◽  
Ching Kung

Abstract Pawn mutants of Paramecium tetraurelia lack a depolarization-activated Ca2+ current and do not swim backward. Using the method of microinjection and sorting a genomic library, we have cloned a DNA fragment that complements pawn-B (pwB/pwB). The minimal complementing fragment is a 798-bp open reading frame (ORF) that restores the Ca2+ current and the backward swimming when expressed. This ORF contains a 29-bp intron and is transcribed and translated. The translated product has two putative transmembrane domains but no clear matches in current databases. Mutations in the available pwB alleles were found within this ORF. The d4-95 and d4-96 alleles are single base substitutions, while d4-662 (previously pawn-D) harbors a 44-bp insertion that matches an internal eliminated sequence (IES) found in the wild-type germline DNA except for a single C-to-T transition. Northern hybridizations and RT-PCR indicate that d4-662 transcripts are rapidly degraded or not produced. A second 155-bp IES in the wild-type germline ORF excises at two alternative sites spanning three asparagine codons. The pwB ORF appears to be separated from a 5′ neighboring ORF by only 36 bp. The close proximity of the two ORFs and the location of the pwB protein as indicated by GFP-fusion constructs are discussed.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 66
Author(s):  
Zoltán László ◽  
Péter Pankovics ◽  
Gábor Reuter ◽  
Attila Cságola ◽  
Ádám Bálint ◽  
...  

Most picornaviruses of the family Picornaviridae are relatively well known, but there are certain “neglected” genera like Bopivirus, containing a single uncharacterised sequence (bopivirus A1, KM589358) with very limited background information. In this study, three novel picornaviruses provisionally called ovipi-, gopi- and bopivirus/Hun (MW298057-MW298059) from enteric samples of asymptomatic ovine, caprine and bovine respectively, were determined using RT-PCR and dye-terminator sequencing techniques. These monophyletic viruses share the same type II-like IRES, NPGP-type 2A, similar genome layout (4-3-4) and cre-localisations. Culture attempts of the study viruses, using six different cell lines, yielded no evidence of viral growth in vitro. Genomic and phylogenetic analyses show that bopivirus/Hun of bovine belongs to the species Bopivirus A, while the closely related ovine-origin ovipi- and caprine-origin gopivirus could belong to a novel species “Bopivirus B” in the genus Bopivirus. Epidemiological investigation of N = 269 faecal samples of livestock (ovine, caprine, bovine, swine and rabbit) from different farms in Hungary showed that bopiviruses were most prevalent among <12-month-old ovine, caprine and bovine, but undetectable in swine and rabbit. VP1 capsid-based phylogenetic analyses revealed the presence of multiple lineages/genotypes, including closely related ovine/caprine strains, suggesting the possibility of ovine–caprine interspecies transmission of certain bopiviruses.


2003 ◽  
Vol 60 (3) ◽  
pp. 533-568 ◽  
Author(s):  
J. C. MANNING ◽  
P. GOLDBLATT ◽  
M. F. FAY

A revised generic synopsis of sub-Saharan Hyacinthaceae is presented, based on a molecular phylogenetic analysis of the family. Generic rank is accorded only to reciprocally monophyletic clades that can be distinguished by recognizable morphological discontinuities, thereby permitting an appropriate generic assignment of species not included in the analysis. Three subfamilies are recognized within the region. Subfamily Ornithogaloideae, characterized by flattened or angular seeds with tightly adhering testa, is considered to include the single genus Ornithogalum, which is expanded to include the genera Albuca, Dipcadi, Galtonia, Neopatersonia and Pseudogaltonia. Recognizing any of these segregates at generic level renders the genus Ornithogalum polyphyletic, while subdivision of Ornithogalum into smaller, morphologically distinguishable segregates in order to preserve the monophyly of each is not possible. Subfamily Urgineoideae, characterized by flattened or winged seeds with brittle, loosely adhering testa, comprises the two mainland African genera Bowiea and Drimia. The latter is well circumscribed by its deciduous, short-lived perianth and includes the previously recognized genera Litanthus, Rhadamanthus, Schizobasis and Tenicroa. The monotypic Madagascan Igidia is provisionally included in the subfamily as a third genus on the basis of its seeds, pending molecular confirmation of its relationships. Subfamily Hyacinthoideae resolves into three clades, distinguished as tribes Hyacintheae (strictly northern hemisphere and not treated further), Massonieae and Pseudoprospereae tribus nov. Full descriptions and a key to their identification are provided for all genera. New combinations reflecting the generic circumscriptions adopted here are made for most African and all Indian and Madagascan species.


Author(s):  
Ghillean T. Prance

AbstractA review is given of the studies of Ghillean Prance and associates on the Chrysobalanaceae over the past sixty years. This has focussed on defining the generic boundaries in the family and on monographic work with a worldwide approach to this pantropical family. The importance of field studies for work on monographs and Floras is emphasized. Monographs are still the basis for much work on conservation, ecology and economic botany and are needed as a foundation for molecular studies. The importance of being open to experimenting with new techniques and as a result being willing to change the taxonomy in accordance with new findings is demonstrated and emphasized. The twelve genera of the Chrysobalanaceae at the beginning of this career-long study have now increased to twenty-eight in order to present a much better monophyletic and evolutionary arrangement based on recent molecular evidence. In particular it was necessary to divide and rearrange the originally large genera Parinari and Licania into a number of smaller segregate genera. All known species were included in a worldwide monograph published in 2003. A brief review of the economic use for the family is given.


2021 ◽  
Vol 6 (1) ◽  
pp. 12
Author(s):  
Hisham A Imad ◽  
Juthamas Phadungsombat ◽  
Emi E Nakayama ◽  
Sajikapon Kludkleeb ◽  
Wasin Matsee ◽  
...  

Chikungunya virus is an Alphavirus belonging to the family Togaviridae that is transmitted to humans by an infected Aedes mosquito. Patients develop fever, inflammatory arthritis, and rash during the acute stage of infection. Although the illness is self-limiting, atypical and severe cases are not uncommon, and 60% may develop chronic symptoms that persist for months or even for longer durations. Having a distinct periodical epidemiologic outbreak pattern, chikungunya virus reappeared in Thailand in December 2018. Here, we describe a cohort of acute chikungunya patients who had presented to the Bangkok Hospital for Tropical Diseases during October 2019. Infection was detected by a novel antigen kit and subsequently confirmed by real-time RT-PCR using serum collected at presentation to the Fever Clinic. Other possible acute febrile illnesses such as influenza, dengue, and malaria were excluded. We explored the sequence of clinical manifestations at presentation during the acute phase and associated the viral load with the clinical findings. Most of the patients were healthy individuals in their forties. Fever and arthralgia were the predominant clinical manifestations found in this patient cohort, with a small proportion of patients with systemic symptoms. Higher viral loads were associated with arthralgia, and arthralgia with the involvement of the large joints was more common in female patients.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Denise Gonçalves ◽  
Rafael de Queiroz Prado ◽  
Eric Almeida Xavier ◽  
Natália Cristina de Oliveira ◽  
Paulo Marcos da Matta Guedes ◽  
...  

Dengue fever is a noncontagious infectious disease caused by dengue virus (DENV). DENV belongs to the familyFlaviviridae, genusFlavivirus, and is classified into four antigenically distinct serotypes: DENV-1, DENV-2, DENV-3, and DENV-4. The number of nations and people affected has increased steadily and today is considered the most widely spread arbovirus (arthropod-borne viral disease) in the world. The absence of an appropriate animal model for studying the disease has hindered the understanding of dengue pathogenesis. In our study, we have found that immunocompetent C57BL/6 mice infected intraperitoneally with DENV-1 presented some signs of dengue disease such as thrombocytopenia, spleen hemorrhage, liver damage, and increase in production of IFNγand TNFαcytokines. Moreover, the animals became viremic and the virus was detected in several organs by real-time RT-PCR. Thus, this animal model could be used to study mechanism of dengue virus infection, to test antiviral drugs, as well as to evaluate candidate vaccines.


Sign in / Sign up

Export Citation Format

Share Document