scholarly journals Effects of vaccination by a recombinant antigen ureB138 (a segment of the β-subunit of urease) against Helicobacter pylori infection

2007 ◽  
Vol 56 (6) ◽  
pp. 847-853 ◽  
Author(s):  
Fumiko Morihara ◽  
Ryoji Fujii ◽  
Emi Hifumi ◽  
Akira Nishizono ◽  
Taizo Uda

Helicobacter pylori has to counteract acidity during colonization in the stomach. The most important region for the enzymic activity of H. pylori urease, consisting of 138 aa (ureB138), was determined by a comparison of the homology of amino acid sequences, and a structural analysis, between urease of H. pylori and various other species. This region was expressed in Escherichia coli as a fusion protein with glutathione S-transferase (GST), which was cleaved by PreScission protease between the GST moiety and ureB138. The ureB138 protein was then purified by gel filtration. The polyclonal antibody (pAb) induced by immunization with the purified ureB138 could suppress urease activity by about 50 %, while the pAb against the H. pylori urease did not show any inhibitory effect at all. Immunohistochemical analysis indicated that the ureB138-specific pAb specifically recognized the H. pylori infecting human gastric tissues. The effects of vaccination of recombinant ureB138 against infection by this organism were also examined. Specific IgG and IgA antibodies against H. pylori urease were induced in the serum of mice immunized with ureB138. A reduction in the number of colonizing H. pylori was observed in mice treated with ureB138 compared to ones treated with BSA and infection control mice. In the protected mice, severe gastritis characterized by marked infiltration of mononuclear cells was noted compared with the gastritis observed in unprotected mice. Immunohistochemical staining for IgA in gastric mucosa showed that the number of mice positively stained with IgA was significantly higher in ureB138-vaccinated mice than in non-vaccinated mice. This indicates that local IgA antibody and severe post-immunization gastritis correlate well with the protection of mice against H. pylori infection.

2020 ◽  
Vol 17 ◽  
Author(s):  
Anam Naz ◽  
Tahreem Zaheer ◽  
Hamza Arshad Dar ◽  
Faryal Mehwish Awan ◽  
Ayesha Obaid ◽  
...  

Background: Helicobacter pylori infection and its treatment still remains a challenge to human health worldwide. A variety of antibiotics and combination therapies are currently used to treat H. pylori induced ulcers and carcinoma; however, no effective treatment is available to eliminate the pathogen from the body. Additionally, antibiotic resistance is also one of the main reasons for prolonged and persistent infection. Aim of the study: Until new drugs are available for this infection, vaccinology seems the only alternative opportunity to exploit against H. pylori induced diseases. Methods: Multiple epitopes prioritized in our previous study have been tested for their possible antigenic combinations, and results in 169-mer and 183-mer peptide vaccines containing the amino acid sequences of 3 and 4 epitopes respectively, along with adjuvant (Cholera Toxin Subunit B adjuvant at 5’ end) and linkers (GPGPG and EAAAK). Results: Poly-epitope proteins proposed as potential vaccine candidates against H. pylori include SabAHP0289-Omp16-VacA (SHOV), VacA-Omp16-HP0289-FecA (VOHF), VacA-Omp16-HP0289-SabA (VOHS), VacA-Omp16-HP0289-BabA (VOHB), VacA-Omp16-HP0289-SabA-FecA (VOHSF), VacAOmp16-HP0289-SabA-BabA (VOHSB) and VacA-Omp16-HP0289-BabA-SabA (VOHBS). Structures of these poly-epitope peptide vaccines have been modelled and checked for their affinity with HLA alleles and receptors. These proposed poly-epitope vaccine candidates bind efficiently with A2, A3, B7 and DR1 superfamilies of HLA alleles. They can also form stable and significant interactions with Toll-like receptor 2 and Toll-like receptor 4. Conclusion: Results suggest that these multi-epitopic vaccines can elicit a significant immune response against H. pylori and can be tested further for efficient vaccine development.


2021 ◽  
Vol 22 (5) ◽  
pp. 2695
Author(s):  
Paweł Krzyżek ◽  
Paweł Migdał ◽  
Emil Paluch ◽  
Magdalena Karwańska ◽  
Alina Wieliczko ◽  
...  

Helicobacter pylori, a gastric pathogen associated with a broad range of stomach diseases, has a high tendency to become resistant to antibiotics. One of the most important factors related to therapeutic failures is its ability to change from a spiral to a coccoid form. Therefore, the main aim of our original article was to determine the influence of myricetin, a natural compound with an antivirulence action, on the morphological transformation of H. pylori and check the potential of myricetin to increase the activity of antibiotics against this pathogen. We observed that sub-minimal inhibitory concentrations (sub-MICs) of this compound have the ability to slow down the process of transformation into coccoid forms and reduce biofilm formation of this bacterium. Using checkerboard assays, we noticed that the exposure of H. pylori to sub-MICs of myricetin enabled a 4–16-fold reduction in MICs of all classically used antibiotics (amoxicillin, clarithromycin, tetracycline, metronidazole, and levofloxacin). Additionally, RT-qPCR studies of genes related to the H. pylori morphogenesis showed a decrease in their expression during exposure to myricetin. This inhibitory effect was more strongly seen for genes involved in the muropeptide monomers shortening (csd3, csd6, csd4, and amiA), suggesting their significant participation in the spiral-to-coccoid transition. To our knowledge, this is the first research showing the ability of any compound to synergistically interact with all five antibiotics against H. pylori and the first one showing the capacity of a natural substance to interfere with the morphological transition of H. pylori from spiral to coccoid forms.


2002 ◽  
Vol 70 (8) ◽  
pp. 4621-4627 ◽  
Author(s):  
S. Raghavan ◽  
A.-M. Svennerholm ◽  
J. Holmgren

ABSTRACT Therapeutic vaccination is an attractive strategy to control infection and disease caused by Helicobacter pylori. In mice infected with H. pylori we have studied the protective effect of oral immunization with an H. pylori lysate preparation given together with the mucosal adjuvant cholera toxin (CT), both against the initial infection and against a later reinfection challenge. We have also examined the effects of treatment with the CT adjuvant alone on H. pylori infection and reinfection. Specific immunization with lysate was found to result in a sixfold reduction of the extent (bacterial load) of the primary infection and also to provide similar levels of protection against reinfection. However, these effects were associated with severe postimmunization gastritis. In contrast, oral treatment with CT alone at the time of initial infection, while unable to suppress the initial infection, gave rise to a 20-fold reduction in bacterial load upon reinfection without causing any associated gastric inflammation. Both the infected animals that were specifically immunized and those that were treated with CT only displayed increased in vitro proliferative responses of mononuclear cells to H. pylori antigens. Antibody levels in response to H. pylori were on the other hand only marginally increased after treatment with CT, whereas they were markedly elevated after immunization with lysate plus CT, with a rise in both (Th2-driven) immunoglobulin G1 (IgG1) and, especially, (Th1-driven) IgG2a antibodies. The results illustrate the complex balance between protection and harmful inflammation after postinfection vaccination against H. pylori as studied in a mouse model.


2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Mohammad M. Rahman ◽  
Mayra A. Machuca ◽  
Mohammad F. Khan ◽  
Christopher K. Barlow ◽  
Ralf B. Schittenhelm ◽  
...  

ABSTRACT The gastric pathogen Helicobacter pylori has limited ability to use carbohydrates as a carbon source, relying instead on exogenous amino acids and peptides. Uptake of certain peptides by H. pylori requires an ATP binding cassette (ABC) transporter annotated dipeptide permease (Dpp). The transporter specificity is determined by its cognate substrate-binding protein DppA, which captures ligands in the periplasm and delivers them to the permease. Here, we show that, unlike previously characterized DppA proteins, H. pylori DppA binds, with micromolar affinity, peptides of diverse amino acid sequences ranging between two and eight residues in length. We present analysis of the 1.45-Å-resolution crystal structure of its complex with the tetrapeptide STSA, which provides a structural rationale for the observed broad specificity. Analysis of the molecular surface revealed a ligand-binding pocket that is large enough to accommodate peptides of up to nine residues in length. The structure suggests that H. pylori DppA is able to recognize a wide range of peptide sequences by forming interactions primarily with the peptide main chain atoms. The loop that terminates the peptide-binding pocket in DppAs from other bacteria is significantly shorter in the H. pylori protein, providing an explanation for its ability to bind longer peptides. The subsites accommodating the two N-terminal residues of the peptide ligand make the greatest contribution to the protein-ligand binding energy, in agreement with the observation that dipeptides bind with affinity close to that of longer peptides. IMPORTANCE The World Health Organization listed Helicobacter pylori as a high-priority pathogen for antibiotic development. The potential of using peptide transporters in drug design is well recognized. We discovered that the substrate-binding protein of the ABC transporter for peptides, termed dipeptide permease, is an unusual member of its family in that it directly binds peptides of diverse amino acid sequences, ranging between two and eight residues in length. We also provided a structural rationale for the observed broad specificity. Since the ability to import peptides as a source of carbon is critical for H. pylori, our findings will inform drug design strategies based on inhibition or fusion of membrane-impermeant antimicrobials with peptides.


1998 ◽  
Vol 5 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Shan-Rui Han ◽  
Hans-Joachim Schreiber ◽  
Sucharit Bhakdi ◽  
Michael Loos ◽  
Markus J. Maeurer

ABSTRACT Genetic diversity in Helicobacter pylori strains may affect the function and antigenicity of virulence factors associated with bacterial infection and, ultimately, disease outcome. In this study, DNA diversity of H. pylori isolates was examined by analysis of vacA genotypes and by restriction fragment length polymorphism (RFLP) analysis of H. pylori-associated genes (vacA, cagA, flaA,ureAB, and ureCD). Thirty-seven H. pylori isolates from 26 patients were successfully classified into distinct vacA allelic genotypes. The signal sequence allele s1 (31 of 37) predominated over the s2 allele (6 of 37) and was significantly associated with the occurrence (past or present) of gastric ulcers. A novel midregion allele, designated as m3, has been identified in two H. pylori isolates which could not be typed with midregion allele m1- or m2-specific primers. Additionally, significant nucleotide diversity yielding different amino acid sequences was demonstrated by DNA sequencing of vacAfragments from clinical isolates of H. pylori. Furthermore, RFLP analysis of 45 H. pylori isolates (including 15 paired isolates) obtained from antrum and corpus biopsy specimens from 30 individual patients showed remarkably high interhost diversity (one patient, one H. pylori strain) and intrahost identity in gene sequences coding for VacA, CagA, flagellin, and urease. Only in a single patient was a minor genotypic variation at different anatomic sites within the stomach identified. These data warrant the detailed analysis of the effect of genetic diversity on the function and antigenicity of H. pylori-associated virulence factors.


2013 ◽  
Vol 7 (09) ◽  
pp. 651-657 ◽  
Author(s):  
Barik A Salih ◽  
Zuhal Gucin ◽  
Nizamettin Bayyurt

Introduction: Helicobacter pylori cause damage to gastric epithelial cells and alterations in the p53 gene that lead to cancer development. This study aimed to determine the correlation of p53 expression with H. pylori using immunohistochemistry, RFLP-PCR, and histopathology. Methodology: Gastric biopsy samples from gastric cancer (GC) (n = 54) and gastritis (n = 31) patients were examined for histopathological changes and expression of p53 protein by immunohistochemistry. Results: Immunohistochemical analysis of p53 protein expression in H. pylori-positive GC sections showed an average of 44.3% positive cells in tumors and 6.9% in normal tissues, as compared to 16.4% and 4.4% in H. pylori-negative sections. P53 expression showed significant association with H. pylori (P = 0.005), invasion depth (P = 0.029) and inflammation reaction (P = 0.008). In gastritis sections, no difference in the average p53 staining in H. pylori-positive or -negative sections was seen. PCR-RFLP results also showed no difference in genotype frequencies of p53 in H. pylori-positive or -negative gastritis sections. Histopathology study of H. pylori-positive GC sections showed that 97.2% were the intestinal type and 2.8% the diffuse type, while in H. pylori-negative sections 35.2% were the intestinal type and 64.8% the diffuse type. Biopsy sections from H. pylori-positive gastritis patients revealed more severe inflammation than those of H. pylori-negative patients. Conclusion: Our results show that H. pylori infection affects p53 expression in GC. The average p53 expression was significantly higher in tumor than in normal tissues. In gastritis sections p53 expression was significantly associated with H. pylori.


2000 ◽  
Vol 68 (11) ◽  
pp. 6265-6272 ◽  
Author(s):  
Frank Meyer ◽  
Keith T. Wilson ◽  
Stephen P. James

ABSTRACT The gastric inflammatory and immune response in Helicobacter pylori infection may be due to the effect of different H. pylori products on innate immune mechanisms. The aim of this study was to determine whether bacterial components could modulate cytokine production in vitro and thus contribute to Th1 polarization of the gastric immune response observed in vivo. The effect of H. pylori recombinant urease, bacterial lysate, intact bacteria, and bacterial DNA on proliferation and cytokine production by peripheral blood mononuclear cells (PBMCs) from H. pylori-negative donors was examined as a model for innate cytokine responses. Each of the different H. pylori preparations induced gamma interferon (IFN-γ) and interleukin-12p40 (IL-12p40), but not IL-2 or IL-5, production, and all but H. pylori DNA stimulated release of IL-10. Addition of anti-IL-12 antibody to cultures partially inhibited IFN-γ production. In addition, each bacterial product inhibited mitogen-stimulated IL-2 production by PBMCs and Jurkat T cells. The inhibitory effect of bacterial products on IL-2 production correlated with inhibition of mitogen-stimulated lymphocyte proliferation, although urease inhibited IL-2 production without inhibiting proliferation, suggesting that inhibition of IL-2 production alone is not sufficient to inhibit lymphocyte proliferation. The results of these studies demonstrate that Th1 polarization of the gastric immune response may be due in part to the direct effects of multiple different H. pylori components that enhance IFN-γ and IL-12 production while inhibiting both IL-2 production and cell proliferation that may be necessary for Th2 responses.


2014 ◽  
Vol 63 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Cynthia Zaman ◽  
Takako Osaki ◽  
Tomoko Hanawa ◽  
Hideo Yonezawa ◽  
Satoshi Kurata ◽  
...  

Animal models are essential for in vivo analysis of Helicobacter-related diseases. Mongolian gerbils are used frequently to study Helicobacter pylori-induced gastritis and its consequences. The presence of some gastric microbiota with a suppressive effect on H. pylori suggests inhibitory gastric bacteria against H. pylori infection. The aim of the present study was to analyse the microbial ecology between H. pylori and the gastric microbiota of Mongolian gerbils. Gastric mucosa samples of H. pylori-negative and -positive gerbils were orally inoculated to five (Group 1) and six (Group 2) gerbils, respectively, and the gerbils were challenged with H. pylori infection. The colonization rate (40 %) of H. pylori in Group 1 gerbils was lower than the rate (67 %) in Group 2 gerbils. Culture filtrate of the gastric mucosa samples of Group 1 gerbils inhibited the in vitro growth of H. pylori. Three lactobacilli species, Lactobacillus reuteri, Lactobacillus johnsonii and Lactobacillus murinus, were isolated by anaerobic culture from the gerbils in Groups 1 and 2, and identified by genomic sequencing. It was demonstrated that the three different strains of lactobacilli exhibited an inhibitory effect on the in vitro growth of H. pylori. The results suggested that lactobacilli are the dominant gastric microbiota of Mongolian gerbils and the three lactobacilli isolated from the gastric mucosa samples with an inhibitory effect on H. pylori might have an anti-infective effect against H. pylori.


Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 542
Author(s):  
Shun-Hsien Chang ◽  
Pei-Ling Hsieh ◽  
Guo-Jane Tsai

This study investigated the effects of shrimp chitosan with 95% degree of deacetylation (DD95) in combination with clinical antibiotics on the growth and urease production of Helicobacter pylori. The inhibitory effect of DD95 on the adherence of H. pylori to the human intestinal carcinoma cells (TSGH9201) was also investigated. Five strains of H. pylori, including three standard strains and two strains of clinical isolates were used as the test strains. The inhibitory effects of DD95 on growth and urease production of various strains of H. pylori increased with increasing DD95 concentration and decreasing pH values from pH 6.0 to pH 2.0. Urease activity of H. pylori at pH 2.0 in the presence of 4000 μg/mL of DD95 decreased by 37.86% to 46.53%. In the presence of 50 μg/mL antibiotics of amoxicillin, tetracycline, or metronidazole at pH 6.0 and pH 2.0, H. pylori counts were decreased by 1.51–3.19, and 1.47–2.82 Log CFU/mL, respectively. Following the addition of 4000 μg/mL DD95 into the 50 μg/mL antibiotic-containing culture medium with pH 6.0 and pH 2.0, overall H. pylori counts were strongly decreased by 3.67–7.61 and 6.61–6.70 Log CFU/mL, respectively. Further, DD95 could inhibit the adherence of H. pylori on TSGH 9201 cells, as evidenced by fluorescent microscopy and thus may potentially protect against H. pylori infection.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Shila Jalalpour ◽  
Vahid Mirzaee ◽  
Mohammad Taheri ◽  
Mahmood Sheikh Fathollahi ◽  
Hossain Khorramdelazadeh ◽  
...  

Background: The imbalanced expression of chemokines plays critical role in the development of Helicobacter pylori-mediated complications. Objectives: Our aim was to determine ginger extract (GE) effects on the expression of chemokines CCL17, CCL20, CCL22, and CXCL10, as well as CCR4, CCR6, and CXCR3 receptors by peripheral blood mononuclear cells (PBMCs) from H. pylori -infected patients with peptic ulcer (PU). Methods: Peripheral blood mononuclear cells were obtained from 20 patients with H. pylori-associated PU, 20 H. pylori-infected asymptomatic subjects (HAS), and 20 non-infected healthy subjects (NHS). The PBMCs were stimulated by 10 µg/mL of H. pylori-derived crude extract (HPCE) in the presence of 0, 10, 20, and 30 µg/mL of GE. After 36 hours, the supernatant and the RNA extracted from the cells were tested for chemokine concentration and chemokine receptor expression using ELISA and real-time PCR techniques, respectively. Results: In PU patients, treating HPCE-stimulated PBMCs with 10, 20, or 30 µg/mL GE reduced the production of CXCL10 (1.47, 1.5, and 1.53 folds, respectively, P < 0.001 for all), CCL20 (1.44, 1.62, and 1.65 folds, respectively, P < 0.003), and treatment with 30 µg/mL GE increased CCL17 (1.28-fold, P < 0.001) and CCL22 (1.59-fold, P < 0.001) production compared with untreated HPCE-stimulated PBMCs. In PU patients, the HPCE-stimulated PBMCs treated with 10, 20, or 30 µg/mL GE expressed lower levels of CXCR3 (1.9, 3, and 3.5 folds, respectively, P < 0.001) and CCR6 (2.3, 2.7, and 2.8 folds, respectively, P < 0.002) while treating with 10 µg/mL GE upregulated CCR4 (1.7 fold, P = 0.003) compared with untreated HPCE-stimulated PBMCs. Conclusions: Ginger extract modulated the expression of chemokines and their receptors in the PBMCs derived from H. pylori-infected PU patients. The therapeutic potentials of ginger for treating HP-related complications need to be further explored.


Sign in / Sign up

Export Citation Format

Share Document