scholarly journals A novel class of CoA-transferase involved in short-chain fatty acid metabolism in butyrate-producing human colonic bacteria

Microbiology ◽  
2006 ◽  
Vol 152 (1) ◽  
pp. 179-185 ◽  
Author(s):  
Cédric Charrier ◽  
Gary J. Duncan ◽  
Martin D. Reid ◽  
Garry J. Rucklidge ◽  
Donna Henderson ◽  
...  

Bacterial butyryl-CoA CoA-transferase activity plays a key role in butyrate formation in the human colon, but the enzyme and corresponding gene responsible for this activity have not previously been identified. A novel CoA-transferase gene is described from the colonic bacterium Roseburia sp. A2-183, with similarity to acetyl-CoA hydrolase as well as 4-hydroxybutyrate CoA-transferase sequences. The gene product, overexpressed in an Escherichia coli lysate, showed activity with butyryl-CoA and to a lesser degree propionyl-CoA in the presence of acetate. Butyrate, propionate, isobutyrate and valerate competed with acetate as the co-substrate. Despite the sequence similarity to 4-hydroxybutyrate CoA-transferases, 4-hydroxybutyrate did not compete with acetate as the co-substrate. Thus the CoA-transferase preferentially uses butyryl-CoA as substrate. Similar genes were identified in other butyrate-producing human gut bacteria from clostridial clusters IV and XIVa, while other candidate CoA-transferases for butyrate formation could not be detected in Roseburia sp. A2-183. This suggests strongly that the newly identified group of CoA-transferases described here plays a key role in butyrate formation in the human colon.

2021 ◽  
Author(s):  
Shiyi Lu ◽  
Deirdre Mikkelsen ◽  
Hong Yao ◽  
Barbara Williams ◽  
Bernadine Flanagan ◽  
...  

Plant cell walls as well as their component polysaccharides in foods can be utilized to alter and maintain a beneficial human gut microbiota, but it is not known whether the...


2020 ◽  
Vol 11 (9) ◽  
pp. 8369-8379
Author(s):  
Wei Xu ◽  
Ling Lin ◽  
An Liu ◽  
Tuo Zhang ◽  
Sheng Zhang ◽  
...  

LTA regulates SCFA metabolism and improves intestinal mucosal immunity by improving cholesterol synthesis in the liver and inhibiting gluconeogenesis in the colon.


1967 ◽  
Vol 70 (1) ◽  
pp. 8-15 ◽  
Author(s):  
J.B. Sidbury ◽  
Elizabeth K. Smith ◽  
William Harlan

1996 ◽  
Vol 75 (5) ◽  
pp. 733-747 ◽  
Author(s):  
John H Cummings ◽  
Emily R Beatty ◽  
Susan M Kingman ◽  
Sheila A Bingham ◽  
Hans N Englyst

The digestion of four sources of resistant starch (RS) has been studied in twelve healthy volunteers who ate controlled diets for 15 d periods. RS from potato, banana, wheat and maize (17−30 g/d) was compared with a starch-free diet, a diet containing wheat starch that was fully digested in the small intestine, and with 18·4 g NSP from bran/d. RS increased stool wet weight by 1·6 g/d per g RS fed for potato, 1·7 for banana, 2·5 for wheat and 2·7 for maize, but this was significantly less than bran NSP at 4·9 g/g. RS was extensively digested in twenty-seven of thirtyfour diet periods but five subjects were unable to break down one or two of the RS sources. Faecal N and energy excretion were increased. RS decreased NSP breakdown and RS2(resistant starch granules) tended to prolong transit time. All forms of RS increased faecal total short-chain fatty acid excretion. RS2(from potato and banana) gave greater proportions of acetate in faeces, and RS3(retrograded starch from wheat and maize) more propionate. We have concluded that RS2and RS3are broken down in the human gut, probably in the colon although in 26% of cases this breakdown was impaired. RS exerts mild laxative properties, predominantly through stimulation of biomass excretion but also through some sparing of NSP breakdown.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Catharina M. C. Mels ◽  
Peet Jansen van Rensburg ◽  
Francois H. van der Westhuizen ◽  
Pieter J. Pretorius ◽  
Elardus Erasmus

Acetylsalicylic acid and/or its metabolites are implicated to have various effects on metabolism and, especially, on mitochondrial function. These effects include both inhibitory and stimulatory effects. We investigated the effect of both combined and separate oral acetylsalicylic acid and acetaminophen administration at therapeutic doses on the urinary metabolite profile of human subjects. In this paper, we provided in vivo evidence, in human subjects, of a statistically significant increase in isobutyrylcarnitine after the administration of a therapeutic dose of acetylsalicylic acid. We, therefore, propose an inhibitory effect of acetylsalicylic acid on the short-chain fatty acid metabolism, possibly at the level of isobutyryl-CoA dehydrogenase.


2020 ◽  
Vol 75 ◽  
pp. 104278
Author(s):  
Fengfeng Mei ◽  
Zhouwei Duan ◽  
Muxue Chen ◽  
Jinfeng Lu ◽  
Meihui Zhao ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. e0166161 ◽  
Author(s):  
Evelien P. J. G. Neis ◽  
Johanne G. Bloemen ◽  
Sander S. Rensen ◽  
Joost R. van der Vorst ◽  
Maartje A. van den Broek ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jessica Killingsworth ◽  
Darrell Sawmiller ◽  
R. Douglas Shytle

Propionate, a short-chain fatty acid, serves important roles in the human body. However, our review of the current literature suggests that under certain conditions, excess levels of propionate may play a role in Alzheimer’s disease (AD). The cause of the excessive levels of propionate may be related to the Bacteroidetes phylum, which are the primary producers of propionate in the human gut. Studies have shown that the relative abundance of the Bacteroidetes phylum is significantly increased in older adults. Other studies have shown that levels of the Bacteroidetes phylum are increased in persons with AD. Studies on the diet, medication use, and propionate metabolism offer additional potential causes. There are many different mechanisms by which excess levels of propionate may lead to AD, such as hyperammonemia. These mechanisms offer potential points for intervention.


Sign in / Sign up

Export Citation Format

Share Document