scholarly journals MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging

2016 ◽  
Author(s):  
Roberto Ripa ◽  
Luca Dolfi ◽  
Marco Terrigno ◽  
Luca Pandolfini ◽  
Valeria Arcucci ◽  
...  

AbstractIron is an essential metal cofactor for enzymes involved in many cellular functions such as energy generation and cell proliferation. However, excessive iron concentration leads to increased oxidative stress and toxicity. As such, iron homeostasis is strictly controlled by two RNA binding proteins known as Iron Regulatory Proteins (IRPs) that regulate at post-transcriptional level the expression of iron management genes. Despite this fine regulation, impairment of iron homeostasis occurs during aging: iron progressively accumulates in several organs and in turn, it exacerbates cellular vulnerability and tissue decay. Moreover, excessive iron accumulation within the CNS is observed in many neurodegenerative diseases. We investigated the age-dependent changes of iron homeostasis using the short lived fish Nothobranchius furzeri. Here, we show that i) both iron content and expression of microRNA family miR-29 increase during adult life and aging in the N. furzeri brain; ii) iron up-regulates miR-29 expression in fish brain and murine neurons, while in turn miR-29 targets the 3′-UTR of IREB2 mRNA, reducing iron intake; iii) Transgenic fish with knock-down of miR-29 show significant adult-onset up-regulation of IRP2 and its target TFR1 in neurons and display enhanced age-dependent accumulation of brain iron; iv) miR-29 triggers a global gene expression response that partially overlaps with that induced by aging.Our studies indicate that miR-29 modulates intracellular iron homeostasis and is up-regulated as an adaptive response to limit excessive iron accumulation and prevent early-onset aging processes.

2001 ◽  
Vol 356 (1415) ◽  
pp. 1755-1759 ◽  
Author(s):  
Dorothee Staiger

An Arabidopsis transcript preferentially expressed at the end of the daily light period codes for the RNA–binding protein At GRP7. A reverse genetic approach in Arabidopsis thaliana has revealed its role in the generation of circadian rhythmicity: At GRP7 is part of a negative feedback loop through which it influences the oscillations of its own transcript. Biochemical and genetic experiments indicate a mechanism for this autoregulatory circuit: At grp7 gene transcription is rhythmically activated by the circadian clock during the day. The At GPR7 protein accumulates with a certain delay and represses further accumulation of its transcript, presumably at the post–transcriptional level. In this respect, the At GRP7 feedback loop differs from known circadian oscillators in the fruitfly Drosophila and mammals based on oscillating clock proteins that repress transcription of their own genes with a 24 h rhythm. It is proposed that the At GRP7 feedback loop may act within an output pathway from the Arabidopsis clock.


Blood ◽  
2005 ◽  
Vol 105 (5) ◽  
pp. 2161-2167 ◽  
Author(s):  
Guangjun Nie ◽  
Alex D. Sheftel ◽  
Sangwon F. Kim ◽  
Prem Ponka

AbstractCytosolic ferritin sequesters and stores iron and, consequently, protects cells against iron-mediated free radical damage. However, the function of the newly discovered mitochondrial ferritin (MtFt) is unknown. To examine the role of MtFt in cellular iron metabolism, we established a cell line that stably overexpresses mouse MtFt under the control of a tetracycline-responsive promoter. The overexpression of MtFt caused a dose-dependent iron deficiency in the cytosol that was revealed by increased RNA-binding activity of iron regulatory proteins (IRPs) along with an increase in transferrin receptor levels and decrease in cytosolic ferritin. Consequently, the induction of MtFt resulted in a dramatic increase in cellular iron uptake from transferrin, most of which was incorporated into MtFt. The induction of MtFt caused a shift of iron from cytosolic ferritin to MtFt. In addition, iron inserted into MtFt was less available for chelation than that in cytosolic ferritin and the expression of MtFt was associated with decreased mitochondrial and cytosolic aconitase activities, the latter being consistent with the increase in IRP-binding activity. In conclusion, our results indicate that overexpression of MtFt causes a dramatic change in intracellular iron homeostasis and that shunting iron to MtFt likely limits its availability for active iron proteins.


2018 ◽  
Author(s):  
Emad Bahrami-Samani ◽  
Yi Xing

AbstractGene expression is tightly regulated at the post-transcriptional level through splicing, transport, translation, and decay. RNA-binding proteins (RBPs) play key roles in post-transcriptional gene regulation, and genetic variants that alter RBP-RNA interactions can affect gene products and functions. We developed a computational method ASPRIN (Allele-Specific Protein-RNA Interaction), that uses a joint analysis of CLIP-seq (cross-linking and immunoprecipitation followed by high-throughput sequencing) and RNA-seq data to identify genetic variants that alter RBP-RNA interactions by directly observing the allelic preference of RBP from CLIP-seq experiments as compared to RNA-seq. We used ASPRIN to systematically analyze CLIP-seq and RNA-seq data for 166 RBPs in two ENCODE (Encyclopedia of DNA Elements) cell lines. ASPRIN identified genetic variants that alter RBP-RNA interactions by modifying RBP binding motifs within RNA. Moreover, through an integrative ASPRIN analysis with population-scale RNA-seq data, we showed that ASPRIN can help reveal potential causal variants that affect alternative splicing via allele-specific protein-RNA interactions.


2021 ◽  
Author(s):  
Keisuke Hitachi ◽  
Yuri Kiyofuji ◽  
Masashi Nakatani ◽  
Kunihiro Tsuchida

RNA-binding proteins (RBPs) regulate cell physiology via the formation of ribonucleic-protein complexes with coding and non-coding RNAs. RBPs have multiple functions in the same cells; however, the precise mechanism through which their pleiotropic functions are determined remains unknown. In this study, we revealed the multiple inhibitory functions of hnRNPK for myogenic differentiation. We first identified hnRNPK as a lncRNA Myoparr binding protein. Gain- and loss-of-function experiments showed that hnRNPK repressed the expression of myogenin at the transcriptional level via binding to Myoparr. Moreover, hnRNPK repressed the expression of a set of genes coding for aminoacyl-tRNA synthetases in a Myoparr-independent manner. Mechanistically, hnRNPK regulated the eIF2α/Atf4 pathway, one branch of the intrinsic pathways of the endoplasmic reticulum sensors, in differentiating myoblasts. Thus, our findings demonstrate that hnRNPK plays multiple lncRNA-dependent and -independent roles in the inhibition of myogenic differentiation, indicating that the analysis of lncRNA-binding proteins will be useful for elucidating both the physiological functions of lncRNAs and the multiple functions of RBPs.


2020 ◽  
Author(s):  
Melissa J. MacPherson ◽  
Sarah L Erickson ◽  
Drayden Kopp ◽  
Pengqiang Wen ◽  
Mohammadreza Aghanoori ◽  
...  

Abstract The formation of the cerebral cortex requires balanced expansion and differentiation of neural progenitor cells, the fate choice of which requires regulation at many steps of gene expression. As progenitor cells often exhibit transcriptomic stochasticity, the ultimate output of cell fate-determining genes must be carefully controlled at the post-transcriptional level, but how this is orchestrated is poorly understood. Here we report that de novo missense variants in an RNA-binding protein CELF2 cause human cortical malformations and perturb neural progenitor cell fate decisions in mice by disrupting the nucleocytoplasmic transport of CELF2. In self-renewing neural progenitors, CELF2 is localized in the cytoplasm where it binds and coordinates mRNAs that encode cell fate regulators and neurodevelopmental disorder-related factors. The translocation of CELF2 into the nucleus releases mRNAs for translation and thereby triggers neural progenitor differentiation. Our results reveal a mechanism by which transport of CELF2 between discrete subcellular compartments orchestrates an RNA regulon to instruct cell fates in cerebral cortical development.


2018 ◽  
Vol 24 (16) ◽  
pp. 1766-1771 ◽  
Author(s):  
Kazuya Masuda ◽  
Tadamitsu Kishimoto

Background: Infection, tissue damage and aging can cause inflammation with high levels of inflammatory cytokines. Overproduction of inflammatory cytokines often leads to systemic inflammatory response syndrome (SIRS), severe sepsis, and septic shock. However, prominent therapeutic targets have not been found, although the incidence of sepsis is likely to increase annually. Our recent studies indicate that some RNA-binding proteins, which control gene expression of inflammatory cytokines at the post-transcriptional level, may play a critical role in inflammatory diseases such as sepsis. Results: 1) One of the RNA-binding proteins, AT-rich interactive domain-containing 5a (Arid5a) promotes cytokine production through control of mRNA half-lives of pro-inflammatory molecules such as IL-6, STAT3, T-bet, and OX40 in activated macrophages and T cells. Arid5a KO mice are refractory to endotoxin shock, bleomycininduced lung injury, and inflammatory autoimmune disease. 2) Chlorpromazine (CPZ), which is recognized as a psychotic drug, impairs post-transcriptional gene expression of Il6 in LPS-stimulated macrophages: CPZ inhibits the binding activity of Arid5a to the 3’UTR of Il6 mRNA, thereby destabilizing Il6 mRNA possibly through suppression of Arid5a expression. 3) CPZ has strong suppressive effects on cytokine production such as TNF-α in vivo. Mice with treatment of CPZ are resistant to lipopolysaccharide (LPS)-induced shock. Conclusion: Thus, Arid5a contributes to the activation of macrophages and T cells through positive control of mRNA half-lives of inflammatory cytokines and its related molecules, which might lead to cytokine storm. Interestingly, Arid5a was identified from an inhibitory effect of CPZ on IL-6 production in macrophages activated by LPS. Therefore, CPZ derivatives or Arid5a inhibitors may have a potential to suppress severe sepsis through control of post-transcriptional gene expression.


Blood ◽  
2003 ◽  
Vol 102 (9) ◽  
pp. 3404-3411 ◽  
Author(s):  
Brian D. Schneider ◽  
Elizabeth A. Leibold

AbstractIron regulatory proteins (IRP1 and IRP2) are RNA-binding proteins that affect the translation and stabilization of specific mRNAs by binding to stem-loop structures known as iron responsive elements (IREs). IREs are found in the 5′-untranslated region (UTR) of ferritin (Ft) and mitochondrial aconitase (m-Aco) mRNAs, and in the 3′-UTR of transferrin receptor (TfR) and divalent metal transporter-1 (DMT1) mRNAs. Our previous studies show that besides iron, IRPs are regulated by hypoxia. Here we describe the consequences of IRP regulation and show that iron homeostasis is regulated in 2 phases during hypoxia: an early phase where IRP1 RNA-binding activity decreases and iron uptake and Ft synthesis increase, and a late phase where IRP2 RNA-binding activity increases and iron uptake and Ft synthesis decrease. The increase in iron uptake is independent of DMT1 and TfR, suggesting an unknown transporter. Unlike Ft, m-Aco is not regulated during hypoxia. During the late phase of hypoxia, IRP2 RNA-binding activity increases, becoming the dominant regulator responsible for decreasing Ft synthesis. During reoxygenation (ReO2), Ft protein increases concomitant with a decrease in IRP2 RNA-binding activity. The data suggest that the differential regulation of IRPs during hypoxia may be important for cellular adaptation to low oxygen tension.


2020 ◽  
Author(s):  
Paulina Podszywalow-Bartnicka ◽  
Magdalena Wolczyk ◽  
Katarzyna Piwocka

Post-transcriptional regulation is an important step of gene expression that allows to fine-tune the cellular protein profile (so called proteome) according to the current demands. That mechanism has been developed to aid survival under stress conditions, however it occurs to be hijacked by cancer cells. Adjustment of the protein profile remodels signaling in cancer cells to adapt to therapeutic treatment, thereby enabling persistence despite unfavorable environment or accumulating mutations. The proteome is shaped at the post-transcriptional level by numerous mechanisms such as alternative splicing, mRNA modifications and triage by RNA binding proteins, change of ribosome composition or signaling, which altogether regulate the translation process. This chapter is an overview of the translation disturbances found in leukemia and their role in development of the disease, with special focus on the possible therapeutic strategies tested in acute leukemia which target elements of those regulatory mechanisms.


2020 ◽  
Author(s):  
Katherine Rothamel ◽  
Sarah Arcos ◽  
Byungil Kim ◽  
Clara Reasoner ◽  
Neelanjan Mukherjee ◽  
...  

SUMMARYUpon detection of a pathogen, the innate immune system triggers signaling events leading to the transcription of mRNAs that encode for pro-inflammatory and anti-microbial effectors. RNA-binding proteins (RBPs) interact with these functionally critical mRNAs and temporally regulate their fates at the post-transcriptional level. One such RBP is ELAVL1, which is known to bind to introns and 3’UTRs. While significant progress has been made in understanding how ELAVL1 regulates mRNAs, how its target repertoire and binding affinity changes within an immunological context remains poorly understood. Here, we overlap four distinct high-throughput approaches to define its cell-type and context-dependent targets and determine its regulatory impact during immune activation. ELAVL1 overwhelmingly binds to intronic sites in a naïve state, but during an innate immune response, ELAVL1 targets the 3’UTR - binding both previously and newly expressed mRNAs. We find that ELAVL1 mediates the RNA stability of genes that regulate the pathways involved in pathogen sensing and cytokine production. Our findings reveal the importance of examining RBP regulatory impact under dynamic transcriptomic events to best understand their post-transcriptional regulatory roles within specific biological circuitries.


2021 ◽  
Vol 22 (21) ◽  
pp. 11618
Author(s):  
Anna L. Schorr ◽  
Marco Mangone

Alternative RNA splicing is an important regulatory process used by genes to increase their diversity. This process is mainly executed by specific classes of RNA binding proteins that act in a dosage-dependent manner to include or exclude selected exons in the final transcripts. While these processes are tightly regulated in cells and tissues, little is known on how the dosage of these factors is achieved and maintained. Several recent studies have suggested that alternative RNA splicing may be in part modulated by microRNAs (miRNAs), which are short, non-coding RNAs (~22 nt in length) that inhibit translation of specific mRNA transcripts. As evidenced in tissues and in diseases, such as cancer and neurological disorders, the dysregulation of miRNA pathways disrupts downstream alternative RNA splicing events by altering the dosage of splicing factors involved in RNA splicing. This attractive model suggests that miRNAs can not only influence the dosage of gene expression at the post-transcriptional level but also indirectly interfere in pre-mRNA splicing at the co-transcriptional level. The purpose of this review is to compile and analyze recent studies on miRNAs modulating alternative RNA splicing factors, and how these events contribute to transcript rearrangements in tissue development and disease.


Sign in / Sign up

Export Citation Format

Share Document