scholarly journals Waves of chromatin modifications in mouse dendritic cells in response to LPS stimulation

2016 ◽  
Author(s):  
Alexis Vandenbon ◽  
Yutaro Kumagai ◽  
Yutaka Suzuki ◽  
Kenta Nakai

AbstractBackgroundThe importance of transcription factors (TFs) and epigenetic modifications in the control of gene expression is widely accepted. However, causal relationships between changes in TF binding, histone modifications, and gene expression during the response to extracellular stimuli are not well understood. Here, we analyzed the ordering of these events on a genome-wide scale in dendritic cells (DCs) in response to lipopolysaccharide (LPS) stimulation.ResultsUsing a ChIP-seq time series dataset, we found that the LPS-induced accumulation of different histone modifications follow clearly distinct patterns. Increases in H3K4me3 appear to coincide with transcriptional activation. In contrast, H3K9K14ac accumulates early after stimulation, and H3K36me3 at later time points. Integrative analysis with TF binding data revealed potential links between TF activation and dynamics in histone modifications. Especially, LPS-induced increases in H3K9K14ac and H3K4me3 were associated with binding by STAT1/2, and were severely impaired inStat1-/-cells.ConclusionsWhile the timing of short-term changes of some histone modifications coincides with changes in transcriptional activity, this is not the case for others. In the latter case, dynamics in modifications more likely reflect strict regulation by stimulus-induced TFs, and their interactions with chromatin modifiers.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2716-2716
Author(s):  
Robert G. Harris ◽  
Diane Krause

Abstract Covalent modifications on histones are epigenetic changes that play critical roles in control of gene expression. Most studies correlating specific histone modifications with transcriptional activity have been performed in yeast, and little is known about their dynamics during hematopoietic differentiation. We examined the dynamics of histone modifications and chromatin accessibility during all-trans retinoic acid (ATRA) induced differentiation of promyelocytes down the neutrophil lineage. As a model system, we used the human promyelocytic NB4 cell line, which undergoes neutrophil differentiation in response to ATRA. Using chromatin immunoprecipitation (ChIP) and quantitative PCR, we measured changes in dimethyl K4 (2MeH3K4), trimethyl K4 (3MeH3K4) and acetyl lysine 9 (Ac9H3K9) of histone H3 in the promoters of 3 genes that undergo transcriptional activation (Defensin-a, C/EBP-b and RAR-b), 1 gene that undergoes transcriptional downregulation (Myeloperoxidase), one gene that is constitutively active (GAPDH) and 1 gene that is silent (Albumin) during ATRA-induced differentiation. We correlated the changes in histone modifications with the gene expression pattern of these genes. AcH3K9 levels correlated with active gene transcription. At time 0, levels of AcH3K9 were enriched 50-fold and 100-fold over input in the MPO and GAPDH promoters, respectively, but only 5-fold on the C/EBP-b, Def-a and RAR-b promoters. Consistent with this finding, levels of AcH3K9 increased to 40-fold over input within 24h of differentiation in the Def-a and C/EBP-b promoters. On the silent albumin promoter, AcH3K9 levels never increased over input after ATRA. For the methylation patterns on H3K4, however, the findings were quite revealing. As expected, on the active MPO promoter, 2MeH3K4 was enriched 60-fold. However, 2MeH3K4was also present at high levels (15-30-fold) on the promoters of unexpressed Def-a, C/EBP-b and RAR-b suggesting that silent genes that are “primed” for activation are enriched for 2MeH3K4, consistent with previous data in yeast. After differentiation with ATRA, 2MeH3K4 went up only 3-fold for Def-a and C/EBP-b. The most surprising changes were found in 3MeH3K4 levels and in chromatin modification at the RAR-b promoter. Consistent with previous data showing that 3MeH3K4 is associated with gene activation, time 0 levels of 3MeH3K4 were enriched 80-fold and 150-fold over input in the MPO and GAPDH promoters, respectively, and were at background levels in the C/EBP-b, Def-a, and RAR-b promoters. After differentiation, however, although there was a significant increase in 3MeH3K4 levels within 12 hours in the Def-a promoter, 3MeH3K4 never was present on the C/EBP-b promoter, despite a huge increase in gene transcription, as well as significant and rapid increases in AcH3K9 and 2MeH3K4. Perhaps the most significant findings, however, were at the promoter of the RAR-b gene. RAR-b is unique amongst the genes studies in that it is directly bound by the PML-RAR-a fusion protein. This promoter was not detectable by PCR in ChIP assays after ATRA addition. To test the hypothesis that histones were lost on the RAR-b promoter during ATRA-induced differentiation, we used MNase digestion of chromatin. Nucleosome loss was confirmed by a decrease in precipitated RAR-b promoter DNA within 24 hours of ATRA addition. In contrast, exon1 of RAR-b was modified in a manner similar to Def-a and C/EBP-b. These findings indicate that despite the seemingly coordinately regulated increase in transcription of multiple genes upon myeloid differentiation, the chromatin modifications on the promoters of these genes are regulated quite differently.


2019 ◽  
Vol 116 (14) ◽  
pp. 6938-6943 ◽  
Author(s):  
Alain Pacis ◽  
Florence Mailhot-Léonard ◽  
Ludovic Tailleux ◽  
Haley E. Randolph ◽  
Vania Yotova ◽  
...  

DNA methylation is considered to be a relatively stable epigenetic mark. However, a growing body of evidence indicates that DNA methylation levels can change rapidly; for example, in innate immune cells facing an infectious agent. Nevertheless, the causal relationship between changes in DNA methylation and gene expression during infection remains to be elucidated. Here, we generated time-course data on DNA methylation, gene expression, and chromatin accessibility patterns during infection of human dendritic cells withMycobacterium tuberculosis. We found that the immune response to infection is accompanied by active demethylation of thousands of CpG sites overlapping distal enhancer elements. However, virtually all changes in gene expression in response to infection occur before detectable changes in DNA methylation, indicating that the observed losses in methylation are a downstream consequence of transcriptional activation. Footprinting analysis revealed that immune-related transcription factors (TFs), such as NF-κB/Rel, are recruited to enhancer elements before the observed losses in methylation, suggesting that DNA demethylation is mediated by TF binding to cis-acting elements. Collectively, our results show that DNA demethylation plays a limited role to the establishment of the core regulatory program engaged upon infection.


2010 ◽  
Vol 9 (4) ◽  
pp. 514-531 ◽  
Author(s):  
Barbara Heise ◽  
Julia van der Felden ◽  
Sandra Kern ◽  
Mario Malcher ◽  
Stefan Brückner ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, the TEA transcription factor Tec1 is known to regulate target genes together with a second transcription factor, Ste12. Tec1-Ste12 complexes can activate transcription through Tec1 binding sites (TCSs), which can be further combined with Ste12 binding sites (PREs) for cooperative DNA binding. However, previous studies have hinted that Tec1 might regulate transcription also without Ste12. Here, we show that in vivo, physiological amounts of Tec1 are sufficient to stimulate TCS-mediated gene expression and transcription of the FLO11 gene in the absence of Ste12. In vitro, Tec1 is able to bind TCS elements with high affinity and specificity without Ste12. Furthermore, Tec1 contains a C-terminal transcriptional activation domain that confers Ste12-independent activation of TCS-regulated gene expression. On a genome-wide scale, we identified 302 Tec1 target genes that constitute two distinct classes. A first class of 254 genes is regulated by Tec1 in a Ste12-dependent manner and is enriched for genes that are bound by Tec1 and Ste12 in vivo. In contrast, a second class of 48 genes can be regulated by Tec1 independently of Ste12 and is enriched for genes that are bound by the stress transcription factors Yap6, Nrg1, Cin5, Skn7, Hsf1, and Msn4. Finally, we find that combinatorial control by Tec1-Ste12 complexes stabilizes Tec1 against degradation. Our study suggests that Tec1 is able to regulate TCS-mediated gene expression by Ste12-dependent and Ste12-independent mechanisms that enable promoter-specific transcriptional control.


2015 ◽  
Vol 20 (2) ◽  
Author(s):  
Dan Qin ◽  
Cunshuan Xu

AbstractLong non-coding RNAs (lncRNAs) have attracted considerable attention recently due to their involvement in numerous key cellular processes and in the development of various disorders. New high-throughput methods enable their study on a genome-wide scale. Numerous lncRNAs have been identified and characterized as important members of the biological regulatory network, with significant roles in regulating gene expression at the epigenetic, transcriptional and post-transcriptional levels. This paper summarizes the diverse mechanisms of action of these lncRNAs and looks at the study strategies in this field. A major challenge in future study is to establish more effective bioinformatics and experimental methods to explore the functions, detailed mechanisms of action and structures deciding the functional diversity of lncRNAs, since the vast majority remain unresolved.


2015 ◽  
Vol 168 (4) ◽  
pp. 1246-1261 ◽  
Author(s):  
Judy A. Brusslan ◽  
Giancarlo Bonora ◽  
Ana M. Rus-Canterbury ◽  
Fayha Tariq ◽  
Artur Jaroszewicz ◽  
...  

2021 ◽  
Author(s):  
Elena Garcia-Perez ◽  
Borja Diego-Martin ◽  
Alfredo Quijano-Rubio ◽  
Elena Moreno Gimenez ◽  
Diego Orzaez ◽  
...  

CRISPR-based programmable transcriptional activators (PTAs) are used in plants for rewiring gene networks. Better tuning of their activity in a time and dose-dependent manner should allow precise control of gene expression. Here, we report the optimization of a Copper Inducible system called CI-switch for conditional gene activation in Nicotiana benthamiana. In the presence of copper, the copper-responsive factor CUP2 undergoes a conformational change and binds a DNA motif named copper-binding site (CBS). In this study, we tested several activation domains fused to CUP2 and found that the non-viral Gal4 domain results in strong activation of a reporter gene equipped with a minimal promoter, offering advantages over previous designs. To connect copper regulation with downstream programable elements, several copper-dependent configurations of the strong dCasEV2.1 PTA were assayed, aiming at maximizing activation range, while minimizing undesired background expression. The best configuration involved a dual copper regulation of the two protein components of the PTA, namely dCas9:EDLL and MS2:VPR, and a constitutive RNA pol III-driven expression of the third component, a guide RNA with anchoring sites for the MS2 RNA-binding domain. With these optimizations in place, the CI/dCasEV2.1 system resulted in copper-dependent activation rates of 2,600-fold for the endogenous N. benthamiana DFR gene, with negligible expression in the absence of the trigger. The tight regulation of copper over CI/dCasEV2.1 makes this system ideal for the conditional production of plant-derived metabolites and recombinant proteins in the field.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kun Li ◽  
Jinxiang Han ◽  
Ziqiang Wang

AbstractHistone modification critically contributes to the epigenetic control of gene expression by changing the configuration of chromatin and modifying the access of transcription factors to gene promoters. Recently, we observed that histone acetylation and crotonylation mediated the expression of endocytosis-related genes and tumor-related immune checkpoint genes by regulating the enrichment of signal transducer and activator of transcription 3 on these gene promoters in Alzheimer’s disease and tumorigenesis, suggesting that histone modification plays an important role in disease development. Furthermore, studies performed in the past decade revealed that histone modifications affect osteogenic differentiation by regulating the expression of osteogenic marker genes. In this review, we summarize and discuss the histone modification-centric regulation of osteogenic gene expression. This review improves the understanding of the role of histone modifications in osteogenic differentiation and describes its potential as a therapeutic target for osteogenic differentiation-related diseases.


Open Biology ◽  
2012 ◽  
Vol 2 (4) ◽  
pp. 120033 ◽  
Author(s):  
S. Kelly ◽  
S. Kramer ◽  
A. Schwede ◽  
P. K. Maini ◽  
K. Gull ◽  
...  

The trypanosome genome is characterized by RNA polymerase II-driven polycistronic transcription of protein-coding genes. Ten to hundreds of genes are co-transcribed from a single promoter; thus, selective regulation of individual genes via initiation is impossible. However, selective responses to external stimuli occur and post-transcriptional mechanisms are thought to account for all temporal gene expression patterns. We show that genes encoding mRNAs that are differentially regulated during the heat-shock response are selectively positioned in polycistronic transcription units; downregulated genes are close to transcription initiation sites and upregulated genes are distant. We demonstrate that the position of a reporter gene within a transcription unit is sufficient to reproduce this effect. Analysis of gene ontology annotations reveals that positional bias is not restricted to stress–response genes and that there is a genome-wide organization based on proximity to transcription initiation sites. Furthermore, we show that the relative abundance of mRNAs at different time points in the cell division cycle is dependent on the location of the corresponding genes to transcription initiation sites. This work provides evidence that the genome in trypanosomes is organized to facilitate co-coordinated temporal control of gene expression in the absence of selective promoters.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yiting Lim ◽  
Sonali Arora ◽  
Samantha L. Schuster ◽  
Lukas Corey ◽  
Matthew Fitzgibbon ◽  
...  

AbstractThe functional consequences of genetic variants within 5’ untranslated regions (UTRs) on a genome-wide scale are poorly understood in disease. Here we develop a high-throughput multi-layer functional genomics method called PLUMAGE (Pooled full-length UTR Multiplex Assay on Gene Expression) to quantify the molecular consequences of somatic 5’ UTR mutations in human prostate cancer. We show that 5’ UTR mutations can control transcript levels and mRNA translation rates through the creation of DNA binding elements or RNA-based cis-regulatory motifs. We discover that point mutations can simultaneously impact transcript and translation levels of the same gene. We provide evidence that functional 5’ UTR mutations in the MAP kinase signaling pathway can upregulate pathway-specific gene expression and are associated with clinical outcomes. Our study reveals the diverse mechanisms by which the mutational landscape of 5’ UTRs can co-opt gene expression and demonstrates that single nucleotide alterations within 5’ UTRs are functional in cancer.


2019 ◽  
Author(s):  
Jason Fontana ◽  
Chen Dong ◽  
Cholpisit Kiattisewee ◽  
Venkata P. Chavali ◽  
Benjamin I. Tickman ◽  
...  

AbstractIn bacterial systems, CRISPR-Cas transcriptional activation (CRISPRa) has the potential to dramatically expand our ability to regulate gene expression, but we currently lack a complete understanding of the rules for designing effective guide RNA target sites. We have identified multiple features of bacterial promoters that impose stringent requirements on bacterial CRISPRa target sites. Most importantly, we found that shifting a gRNA target site by 2-4 bases along the DNA target can cause a nearly complete loss in activity. The loss in activity can be rescued by shifting the target site 10-11 bases, corresponding to one full helical turn. Practically, our results suggest that it will be challenging to find a gRNA target site with an appropriate PAM sequence at precisely the right position at arbitrary genes of interest. To overcome this limitation, we demonstrate that a dCas9 variant with expanded PAM specificity allows activation of promoters that cannot be activated by S. pyogenes dCas9. These results provide a roadmap for future engineering efforts to further expand and generalize the scope of bacterial CRISPRa.


Sign in / Sign up

Export Citation Format

Share Document