scholarly journals Preservation of protein expression systems at elevated temperatures for portable therapeutic production

2017 ◽  
Vol 14 (129) ◽  
pp. 20161039 ◽  
Author(s):  
David K. Karig ◽  
Seneca Bessling ◽  
Peter Thielen ◽  
Sherry Zhang ◽  
Joshua Wolfe

Many biotechnology capabilities are limited by stringent storage needs of reagents, largely prohibiting use outside of specialized laboratories. Focusing on a large class of protein-based biotechnology applications, we address this issue by developing a method for preserving cell-free protein expression systems for months above room temperature. Our approach realizes unprecedented long-term stability at elevated temperatures by leveraging the sugar alcohol trehalose, a simple, low-cost, open-air drying step, and strategic separation of reaction components during drying. The resulting preservation capacity enables efficient production of a wide range of on-demand proteins under adverse conditions, for instance during emergency outbreaks or in remote locations. To demonstrate application potential, we use cell-free reagents subjected to months of exposure at 37°C and atmospheric conditions to produce sufficient concentrations of a pyocin protein to kill Pseudomonas aeruginosa , a troublesome pathogen for traumatic and burn wound injuries. Our work makes possible new biotechnology applications that demand ruggedness and scalability.

2016 ◽  
Author(s):  
David Karig ◽  
Seneca Bessling ◽  
Peter Thielen ◽  
Sherry Zhang ◽  
Joshua Wolfe

Many biotechnology capabilities are limited by stringent storage needs of reagents, largely prohibiting use outside of specialized laboratories. Focusing on a large class of protein-based biotechnology applications, we address this issue by developing a method for preserving cell-free protein expression systems under months of heat stress. Our approach realizes an unprecedented degree of long term heat stability by leveraging the sugar alcohol trehalose, a simple, low-cost, open-air drying step, and strategic separation of sets of reaction components during drying. The resulting preservation capacity opens the door for efficient production of a wide range of on-demand proteins under adverse conditions, for instance during emergency outbreaks or in remote or otherwise inaccessible locations. As such, our preservation method stands to advance a great number of different cell-free technologies, including remediation efforts, point of care therapeutics, and large-scale biosensing. To demonstrate this application potential, we use cell-free reagents subjected to months of heat stress and atmospheric conditions to produce sufficient concentrations of a pyocin protein to kill Pseudomonas aeruginosa, one of the most troublesome pathogens for traumatic and burn wound injuries. Our work makes possible new biotechnology applications that demand both ruggedness and scalability.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2406
Author(s):  
Mashaalah Zarejousheghani ◽  
Parvaneh Rahimi ◽  
Helko Borsdorf ◽  
Stefan Zimmermann ◽  
Yvonne Joseph

Globally, there is growing concern about the health risks of water and air pollution. The U.S. Environmental Protection Agency (EPA) has developed a list of priority pollutants containing 129 different chemical compounds. All of these chemicals are of significant interest due to their serious health and safety issues. Permanent exposure to some concentrations of these chemicals can cause severe and irrecoverable health effects, which can be easily prevented by their early identification. Molecularly imprinted polymers (MIPs) offer great potential for selective adsorption of chemicals from water and air samples. These selective artificial bio(mimetic) receptors are promising candidates for modification of sensors, especially disposable sensors, due to their low-cost, long-term stability, ease of engineering, simplicity of production and their applicability for a wide range of targets. Herein, innovative strategies used to develop MIP-based sensors for EPA priority pollutants will be reviewed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chandran Sathesh-Prabu ◽  
Rameshwar Tiwari ◽  
Doyun Kim ◽  
Sung Kuk Lee

AbstractInducible and tunable expression systems are essential for the microbial production of biochemicals. Five different carbon source- and substrate-inducible promoter systems were developed and further evaluated in Pseudomonas putida KT2440 by analyzing the expression of green fluorescent protein (GFP) as a reporter protein. These systems can be induced by low-cost compounds such as glucose, 3-hydroxypropionic acid (3HP), levulinic acid (LA), and xylose. 3HP-inducible HpdR/PhpdH was also efficiently induced by LA. LvaR/PlvaA and XutR/PxutA systems were induced even at low concentrations of LA (0.1 mM) and xylose (0.5 mM), respectively. Glucose-inducible HexR/Pzwf1 showed weak GFP expression. These inducer agents can be used as potent starting materials for both cell growth and the production of a wide range of biochemicals. The efficiency of the reported systems was comparable to that of conventional chemical-inducible systems. Hence, the newly investigated promoter systems are highly useful for the expression of target genes in the widely used synthetic biology chassis P. putida KT2440 for industrial and medical applications.


2021 ◽  
Author(s):  
Zilong Chen ◽  
Zhaowei Zhu ◽  
Liting Huang ◽  
Chuantong Cheng

Abstract Photodetectors (PDs) are the core component of multiple commercial optical sensing systems. Currently, the detection of ultra-weak ultraviolet (UV) optical signals is becoming increasingly important for wide range of applications in civil and military industries. Due to its wide band gap, low cost, and long-term stability, titanium dioxide (TiO2) is an attractive material for UV photodetection. A kind of low-cost TiO2 nanomaterial (named as P25) manufactured by flame hydrolysis is an easily available commercial material. However, a low-cost and high-sensitivity UV PD based on P25 has not been achieved until now. Here, a hybrid UV PD with monolayer CVD graphene covered by a thin film of P25 quantum dots was prepared for the first time, and its responsivity was approximately 105 A/W at 365 nm wavelength. The response time and recovery time of the UV PD were 32.6 s and 34 s, respectively. Strong light absorption and photocontrolled oxygen adsorption of the P25 layer resulted in high UV sensitivity. The UV PDs proposed in this work have great potential for commercialization due to their low cost and high sensitivity.


2021 ◽  
Author(s):  
Anibal Arce ◽  
Fernando Guzman ◽  
Chiara Gandini ◽  
Juan Puig ◽  
Tamara Matute ◽  
...  

Cell-free gene expression systems have emerged as a promising platform for field-deployed biosensing and diagnostics. When combined with programmable toehold switch-based RNA sensors, these systems can be used to detect arbitrary RNAs and freeze-dried for room temperature transport to the point-of-need. These sensors, however, have been implemented using reconstituted PURE cell-free protein expression systems that are difficult to source in the Global South due to their high commercial cost and cold-chain shipping requirements. Here, we describe the implementation of RNA toehold switch-based sensors using E. coli cell lysate-based cell-free protein expression systems, which can be produced locally and reduce the cost of sensors by two orders of magnitude. We then demonstrate that these in-house cell lysates provide sensor performance comparable to commercial PURE cell-free systems. We further optimize use of these lysates with a CRISPRi strategy to enhance the stability of linear DNAs, enabling the direct use of PCR products for fast screening of new designs. As a proof-of-concept, we develop novel toeholds sensors for the plant pathogen Potato Virus Y (PVY), which dramatically reduces the yield of this important staple crop. The local implementation of low-cost cell-free toehold sensors could enable biosensing capacity at the regional level and lead to more decentralized models for global surveillance of infectious disease.


2019 ◽  
Vol 2 (2) ◽  
pp. 30 ◽  
Author(s):  
Thoring ◽  
Zemella ◽  
Wüstenhagen ◽  
Kubick

In the biopharmaceutical pipeline, protein expression systems are of high importance not only for the production of biotherapeutics but also for the discovery of novel drugs. The vast majority of drug targets are proteins, which need to be characterized and validated prior to the screening of potential hit components and molecules. A broad range of protein expression systems is currently available, mostly based on cellular organisms of prokaryotic and eukaryotic origin. Prokaryotic cell-free systems are often the system of choice for drug target protein production due to the simple generation of expression hosts and low cost of preparation. Limitations in the production of complex mammalian proteins appear due to inefficient protein folding and posttranslational modifications. Alternative protein production systems, so-called eukaryotic cell-free protein synthesis systems based on eukaryotic cell-lysates, close the gap between a fast protein generation system and a high quality of complex mammalian proteins. In this study, we show the production of druggable target proteins in eukaryotic cell-free systems. Functional characterization studies demonstrate the bioactivity of the proteins and underline the potential for eukaryotic cell-free systems to significantly improve drug development pipelines.


MRS Bulletin ◽  
1989 ◽  
Vol 14 (9) ◽  
pp. 18-21
Author(s):  
Robert A. Huggins

This issue of the MRS BULLETIN contains three articles relating to the general field that has come to be known as Solid State Ionics. The central feature of this area of science and emerging technology is the rapid transport of atomic or ionic species within solids, and the various phenomena, of both scientific and technological interest, that are related to it.Attention to this area has grown greatly in recent years because of the rapidly increasing recognition of the possibility of a wide range of interesting technological applications. One example already widespread is the use of an oxygen-conducting solid electrolyte as the critical element in the oxygen sensors installed in the exhaust systems of almost all current automobiles to reduce deleterious emissions and improve the efficiency of the combustion process.Work is under way in a number of other directions, including static and dynamic chemical sensors, solid state electrochemical reactors, low impedance selective atomic filters, new concepts for the direct conversion of heat to electricity by the use of sodium- or hydrogen-transporting cycles, a novel method for the low cost electrolysis of water at intermediate temperatures, batteries that can store greatly increased amounts of energy, ion exchange materials, solid state laser hosts, high efficiency fuel cells, electrochromic materials and configurations for both optical displays and “smart windows,” advanced catalysts, atomic reservoirs and pumps, high temperature superconductors, and possibly solid state fusion hosts.Despite this recent attention, however, it is worth noting that interest in solids in which ionic species can move with unusual rapidity is actually not new at all. As early as 1839, Michael Faraday reported measurements on several materials that showed an unusual increase in electrical conductivity at elevated temperatures, contrary to that found in normal metals.


2021 ◽  
Vol 63 (8) ◽  
pp. 44-48
Author(s):  
Kim Minh Nguyen ◽  
◽  
Nguyen Tien Tran ◽  

Owing to their permanent porosity, diverse topology structures, and coordination factors combined with chemical tunability, the zeolitic imidazolate framework (ZIF) has shown great potential for the effective separation of hydrocarbon mixtures. In this work, the authors presented a simple microwave-assisted seeding strategy to rapidly prepare a seed layer for the synthesis of high-quality ZIF-8 membranes for propylene/propane separation. The resulted membranes grown on planar alumina support displayed excellent separation performances for a wide range of propylene/propane mixtures. The membrane displayed a propylene/propane separation factor of 70 and propylene permeance of 105×10-10 mol.m-2s-1Pa-1. Long-term stability test also showed stable gas permeance and separation performance of the ZIF-8 membranes in both atmospheric conditions and propylene/propane mixture stream.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Alloy Digest ◽  
1975 ◽  
Vol 24 (5) ◽  

Abstract USS TENELON is a completely austenitic, nickel-free stainless steel with exceptionally high strength which is retained at elevated temperatures. It has excellent corrosion resistance in atmospheric and mild acid exposures and maintains nonmagnetic characteristics even when 60% cold reduced. It also has good stress-rupture and creep properties in the range 1200-1500 F. It has a wide range of applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-311. Producer or source: United States Steel Corporation.


Sign in / Sign up

Export Citation Format

Share Document