scholarly journals Analysis of Copy Number Loss of the ErbB4 Receptor Tyrosine Kinase in Glioblastoma

2017 ◽  
Author(s):  
DeAnalisa C. Jones ◽  
Adriana Scanteianu ◽  
Matthew DiStefano ◽  
Mehdi Bouhaddou ◽  
Marc R. Birtwistle

ABSTRACTCurrent treatments for glioblastoma multiforme (GBM)—an aggressive form of brain cancer—are minimally effective and yield a median survival of 14.6 months and a two-year survival rate of 30%. Given the severity of GBM and the limitations of its treatment, there is a need for the discovery of novel drug targets for GBM and more personalized treatment approaches based on the characteristics of an individual’s tumor. Most receptor tyrosine kinases—such as EGFR—act as oncogenes, but publicly available data from the Cancer Cell Line Encyclopedia (CCLE) indicates copy number loss in the ERBB4 RTK gene across dozens of GBM cell lines, suggesting a potential tumor suppressor role. This loss is mutually exclusive with loss of its cognate ligand NRG1 in CCLE as well, more strongly suggesting a functional role. The availability of higher resolution copy number data from clinical GBM patients in The Cancer Genome Atlas (TCGA) revealed that a region in Intron 1 of the ERBB4 gene was deleted in 69.1% of tumor samples harboring ERBB4 copy number loss; however, it was also found to be deleted in the matched normal tissue samples from these GBM patients (n = 81). Using the DECIPHER Genome Browser, we also discovered that this mutation occurs at approximately the same frequency in the general population as it does in the disease population. We conclude from these results that this loss in Intron 1 of the ERBB4 gene is neither a de novo driver mutation nor a predisposing factor to GBM, despite the indications from CCLE. A biological role of this significantly occurring genetic alteration is still unknown. While this is a negative result, the broader conclusion is that while copy number data from large cell line-based data repositories may yield compelling hypotheses, careful follow up with higher resolution copy number assays, patient data, and general population analyses are essential to codify initial hypotheses.

2019 ◽  
Vol 57 (1) ◽  
pp. 70-72 ◽  
Author(s):  
George J Burghel ◽  
Unzela Khan ◽  
Wei-Yu Lin ◽  
William Whittaker ◽  
Siddharth Banka

Socioeconomic status (SES) is a major determinant of health. We studied the Index of Multiple Deprivation Rank of 473 families with individuals with pathogenic autosomal copy number variants (CNVs) and known inheritance status. The IMDR distribution of families with pathogenic CNVs was significantly different from the general population. Families with inherited CNVs were significantly more likely to be living in areas of higher deprivation when compared with families that had individuals with de novo CNVs. These results provide unique insights into biological determinants of SES. As CNVs are relatively frequent in the general population, these results have important medical and policy consequences.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1823-1823
Author(s):  
Hisao Nagoshi ◽  
Tomohiko Taki ◽  
Kazuhiro Nishida ◽  
Junya Kuroda ◽  
Yoshiaki Chinen ◽  
...  

Abstract Abstract 1823 Genetic abnormalities play a crucial role in the pathogenesis of various malignancies, including multiple myeloma (MM). Secondary cytogenetic abnormalities implicated in MM progression include 8q24 rearrangements, gain of the long arm of chromosome 1 (1q+), and loss of the short arm of chromosome 17 (17p-). The 8q24 rearrangements, including MYC and PVT1, have been identified by conventional cytogenetic analysis in 3.5–5.0% of MM patients and by fluorescence in situ hybridization (FISH) and spectral karyotyping (SKY) in 9.5–20%. 8q24 rearrangements are frequently associated with advanced disease in MM patients and MM cell lines. Ig chromosomal translocations, such as t(8;14)(q24;q32) and t(8;22)(q24;q11), occur in approximately 25% of MMs with 8q24 rearrangements, while non-Ig chromosomal loci, including 1p13, 1p21–22, 6p21, 6q12–15, 13q14 and 16q22, in which no candidate genes have been delineated so far, have also been identified as translocation partners. MYC has long been a possible candidate target gene for 8q24 rearrangements; however, many of the breakpoints within 8q24 have been assigned to various regions that encompassed more than 2 Mb centromeric or telomeric to MYC. We have previously found frequent PVT1 rearrangements in MM. PVT1 rearrangements were detected in 7 of 12 patients (58.3%) and in 5 of 8 cell lines (62.5%) with 8q24 abnormalities. A combination of SKY, FISH, and oligonucleotide array identified several partner loci of PVT1 rearrangements, such as 4p16, 4q13, 13q13, 14q32 and 16q23–24, and identified a chimeric gene, PVT1 - NBEA, resulting in high expression of abnormal NBEA in a cell line with t(8;13)(q24;q13), AMU-MM1, suggesting PVT1 rearrangements play significant roles in myelomagenesis. In this study, we analyzed RPMI8226 cell line in detail to identify other partner genes of PVT1 in these partner loci. SKY analysis revealed a complex karyotype including der(16)t(16;22)ins(16;8)(q23;q24) in this cell line. Oligonucleotide array analysis clearly demonstrated that the copy number change at 8q24 occurred within intron 1 of PVT1, and at 16q23, the copy number change occurred within intron 8 of WWOX, indicating that the translocation breakpoints of 8q24 and 16q23 were within intron 1 of PVT1 and intron 8 of WWOX, respectively. Based on these results, RT-PCR analysis was performed to detect chimeric products and direct sequencing of this product revealed the fusion of 5'-PVT1 exon 1 with WWOX exon 9-3'. The expression level of WWOX exon 9 was higher than WWOX exon 8–9 detected by semi-quantitative RT-PCR in RPMI8226, suggesting that high expression of WWOX derived from PVT1 - WWOX chimeric transcript, like PVT1 - NBEA. WWOX is generally considered to be a candidate tumor suppressor gene, and known to have a proapoptotic effect by participating in the tumor necrosis factor (TNF) apoptotic pathway and via direct physical interaction with p53 and its homolog p73. However, immunohistochemistry revealed that WWOX protein level were rather elevated in gastric and breast carcinoma. Therefore, WWOX seemed not to act as tumor suppressor gene simply. Although both NBEA and WWOX are located at common fragile site, usually contributing to gene inactivation, FRA13A and FRA16D respectively, these genes highly express via fusion to PVT1. These findings indicate that PVT1 rearrangements play significant roles in myelomagenesis via translocation and fusion to cancer-related genes. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ba Van Vu ◽  
Quyet Nguyen ◽  
Yuki Kondo-Takeoka ◽  
Toshiki Murata ◽  
Naoki Kadotani ◽  
...  

AbstractTransposable elements are common targets for transcriptional and post-transcriptional gene silencing in eukaryotic genomes. However, the molecular mechanisms responsible for sensing such repeated sequences in the genome remain largely unknown. Here, we show that machinery of homologous recombination (HR) and RNA silencing play cooperative roles in copy number-dependent de novo DNA methylation of the retrotransposon MAGGY in the fungusPyricularia oryzae. Genetic and physical interaction studies revealed thatRecAdomain-containing proteins, includingP. oryzaehomologs ofRad51, Rad55, andRad57, together with an uncharacterized protein, Ddnm1, form complex(es) and mediate either the overall level or the copy number-dependence of de novo MAGGY DNA methylation, likely in conjunction with DNA repair. Interestingly,P. oryzaemutants of specific RNA silencing components (MoDCL1andMoAGO2)were impaired in copy number-dependence of MAGGY methylation. Co-immunoprecipitation of MoAGO2 and HR components suggested a physical interaction between the HR and RNA silencing machinery in the process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raimonda Kubiliute ◽  
Indre Januskeviciene ◽  
Ruta Urbanaviciute ◽  
Kristina Daniunaite ◽  
Monika Drobniene ◽  
...  

AbstractHyperactivation of ABC transporter ABCB1 and induction of epithelial–mesenchymal transition (EMT) are the most common mechanism of acquired cancer chemoresistance. This study describes possible mechanisms, that might contribute to upregulation of ABCB1 and synergistically boost the acquisition of doxorubicin (DOX) resistance in breast cancer MX-1 cell line. DOX resistance in MX-1 cell line was induced by a stepwise increase of drug concentration or by pretreatment of cells with an ABCB1 transporter activator tetraphenylphosphonium (TPP+) followed by DOX exposure. Transcriptome analysis of derived cells was performed by human gene expression microarrays and by quantitative PCR. Genetic and epigenetic mechanisms of ABCB1 regulation were evaluated by pyrosequencing and gene copy number variation analysis. Gradual activation of canonical EMT transcription factors with later activation of ABCB1 at the transcript level was observed in DOX-only treated cells, while TPP+ exposure induced considerable activation of ABCB1 at both, mRNA and protein level. The changes in ABCB1 mRNA and protein level were related to the promoter DNA hypomethylation and the increase in gene copy number. ABCB1-active cells were highly resistant to DOX and showed morphological and molecular features of EMT. The study suggests that nongenotoxic ABCB1 inducer can possibly accelerate development of DOX resistance.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 124-125
Author(s):  
Raul Castro-Portuguez ◽  
Samuel Freitas ◽  
George Sutphin

Abstract Hepatocellular carcinoma (HCC) is the most prevalent cancer in the liver. The majority of ingested tryptophan is processed in the liver through the kynurenine pathway, the endpoint of which is de novo NAD+ biosynthesis. Dysregulation of tryptophan-kynurenine metabolism and NAD+ synthesis may promote mitochondrial malfunction, tumor reprogramming, and carcinogenesis. Using a publicly available gene expression dataset from liver hepatocellular carcinoma (LIHC) samples available through The Cancer Genome Atlas (TCGA; n = 371), we employed Principal Component Analysis (PCA), hierarchical clustering, gene-pattern expression profiling, and survival analysis to cluster patients and determine overall survival. Our analysis of genes encoding kynurenine pathway enzymes determined that patients with high QPRT expression had a poor prognosis with decreased median survival, with no effect on the maximum survival. There is a significant difference in the survival between patients with high QPRT expression relative to patients with high HAAO/AFMID expression (HR = 1.2, [95% CI 0.5-1.8] P = 0.0181, Gehan-Breslow-Wilcoxon Test). Patients with high QPRT expression have higher survival rates compared with low QPRT expression (HR = 1.4, [95% CI 0.9-2.2] P = 0.0344, Gehan-Breslow-Wilcoxon Test). To test the consequences of kynurenine-pathway inhibition in mitochondrial function and morphology we use 4-Cl-3HAA, an irreversible HAAO inhibitor, and observed a small increase in mitochondrial fragmentation in HepG2 cells after 24 hours of treatment. We conclude that kynurenine metabolism may be useful as a biomarker to predict patient prognosis among HCC patients. In ongoing work, we are testing QPRT inhibitors in cell culture as a potential adjuvant for chemotherapies.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Yuqing Lou ◽  
Jianlin Xu ◽  
Yanwei Zhang ◽  
Wei Zhang ◽  
Xueyan Zhang ◽  
...  

AbstractEpidermal growth factor receptor (EGFR) is a key oncogene in lung adenocarcinoma (LUAD). Resistance to EGFR tyrosine kinase inhibitors is a major obstacle for EGFR-mutant LUAD patients. Our gene chip array, quantitative polymerase chain reaction validation, and shRNA-based high-content screening identified the Akt kinase lanthionine synthetase C-like protein 2 (LANCL2) as a pro-proliferative gene in the EGFR-mutant LUAD cell line PC9. Therefore, we investigated whether LANCL2 plays a role in promoting cell proliferation and drug resistance in EGFR-mutant LUAD. In silico clinical correlation analysis using the Cancer Genome Atlas Lung Adenocarcinoma dataset revealed a positive correlation between LANCL2 and EGFR expression and an inverse relationship between LANCL2 gain-of-function and survival in LUAD patients. The EGFR-mutant LUAD cell lines PC9 and HCC827 displayed higher LANCL2 expression than the non-EGFR-mutant cell line A549. In addition, LANCL2 was downregulated following gefitinib+pemetrexed combination therapy in PC9 cells. LANCL2 knockdown reduced proliferation and enhanced apoptosis in PC9, HCC827, and A549 cells in vitro and suppressed murine PC9 xenograft tumor growth in vivo. Notably, LANCL2 overexpression rescued these effects and promoted gefitinib + pemetrexed resistance in PC9 and HCC827 cells. Pathway analysis and co-immunoprecipitation followed by mass spectrometry of differentially-expressed genes in LANCL2 knockdown cells revealed enrichment of several cancer signaling pathways. In addition, Filamin A and glutathione S-transferase Mu 3 were identified as two novel protein interactors of LANCL2. In conclusion, LANCL2 promotes tumorigenic proliferation, suppresses apoptosis, and promotes gefitinib+pemetrexed resistance in EGFR-mutant LUAD cells. Based on the positive association between LANCL2, EGFR, and downstream Akt signaling, LANCL2 may be a promising new therapeutic target for EGFR-mutant LUAD.


Sign in / Sign up

Export Citation Format

Share Document