scholarly journals The logic of containing tumors

Author(s):  
Yannick Viossat ◽  
Robert Noble

AbstractChallenging the paradigm of the maximum tolerated dose, recent studies have shown that a strategy aiming for containment, not elimination, can control tumor burden more effectively in vitro, in mouse models, and in the clinic. These outcomes are consistent with the hypothesis that emergence of resistance to cancer therapy may be prevented or delayed by exploiting competitive ecological interactions between drug-sensitive and resistant tumor cell subpopulations. However, although various mathematical and computational models have been proposed to explain the superiority of particular containment strategies, this evolutionary approach to cancer therapy lacks a rigorous theoretical foundation. Here we combine extensive mathematical analysis and numerical simulations to establish general conditions under which a containment strategy is expected to control tumor burden more effectively than applying the maximum tolerated dose. We show that when resistant cells are present, an idealized strategy of containing a tumor at a maximum tolerable size maximizes time to treatment failure (that is, the time at which tumor burden becomes intolerable). These results are very general and do not depend on any fitness cost of resistance. We further provide formulas for predicting the clinical benefits attributable to containment strategies in a wide range of scenarios, and we compare outcomes of theoretically optimal treatments with those of more practical protocols. Our results strengthen the rationale for clinical trials of evolutionarily-informed cancer therapy.

2021 ◽  
Author(s):  
Alexandre Ranc ◽  
Salome Bru ◽  
Simon Mendez ◽  
Muriel Giansily-Blaizot ◽  
Franck Nicoud ◽  
...  

AbstractComputational models of the coagulation cascade are used for a wide range of applications in bio-medical engineering such as drug and bio-medical device developments. However, a lack of robustness of numerical models has been highlighted when studying clinically relevant scenarios. In order to develop more robust models, numerical simulations need to be confronted with realistic situations relevant to clinical practice. In this work, two well-established numerical representations of the coagulation cascade initiated by the intrinsic and extrinsic systems, respectively, were compared with thrombin generation assays considering realistic pathological conditions. Proper modifications were needed to align the in vitro and in silico data, namely; adapting initial conditions to the thrombin assay system, omitting reactions irrelevant to our case study, and improving the fitting of some reaction rates. The modified models were able to capture the experimental trends of thrombin generation for a range of concentrations of factors XII, XI, and VIII for cases in which the coagulation cascade is triggered through the extrinsic and intrinsic systems. Our work emphasizes that when existing coagulation cascade models are extrapolated to experimental settings for which they were not calibrated, careful adjustments must be made. We show that the two coagulation models used in this work can predict physiological conditions, but when studying pathological conditions, proper modifications are needed to improve the numerical results.


Author(s):  
Larry A. Taber

Mechanical forces are closely involved in the construction of an embryo. Experiments have suggested that mechanical feedback plays a role in regulating these forces, but the nature of this feedback is poorly understood. Here, we propose a general principle for the mechanics of morphogenesis, as governed by a pair of evolution equations based on feedback from tissue stress. In one equation, the rate of growth (or contraction) depends on the difference between the current tissue stress and a target (homeostatic) stress. In the other equation, the target stress changes at a rate that depends on the same stress difference. The parameters in these morphomechanical laws are assumed to depend on stress rate. Computational models are used to illustrate how these equations can capture a relatively wide range of behaviours observed in developing embryos, as well as show the limitations of this theory. Specific applications include growth of pressure vessels (e.g. the heart, arteries and brain), wound healing and sea urchin gastrulation. Understanding the fundamental principles of tissue construction can help engineers design new strategies for creating replacement tissues and organs in vitro .


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 7539-7539
Author(s):  
Simon Ekman ◽  
Johan Harmenberg ◽  
Jan-Erik Frödin ◽  
Stefan Bergström ◽  
Cecilia Wassberg ◽  
...  

7539 Background: The small-molecule IGF-1R inhibitor picropodophyllin (PPP) is the active compound in the oral suspension AXL1717. PPP has shown extensive preclinical antitumor effects against a wide range of cancers supporting its use as a single agent treatment. Methods: The clinical phase Ia/b study on advanced progressive cancer patients with various solid tumors and without remaining treatment options aimed at establishing the recommended phase II dose (RPTD) and the maximum tolerated dose (MTD) of AXL1717. Phase Ia consisted of single day dosing and phase Ib multiday dosing (to an accumulated total of 28 days of treatment; 2*28 days following amendment) with 3 weeks intermission between treatments. Non-progressing patients could continue treatment in the extension study without time limitation (treated 119 weeks). PK samples were obtained at 10 different time-points after the morning dose when appropriate. Results: Phase Ia included 16 patients treated with 78 BID doses ranging from 5-2900 mg AXL1717 BID without any dose-limiting toxicity. Phase Ib included 39 patients treated with doses between 290-930 mg BID in periods between 7-28 days, totally for 147 weeks. Phase Ib showed that AXL1717 was well tolerated and neutropenia was the only detected dose-related, reversible, dose-limiting toxicity (DLT). RPTD dose was set at 390 mg BID to minimize neutropenia. Although the study was not designed for efficacy assessment, some patients, mainly with NSCLC, showed signs of clinical benefit, including 3 partial responses and 12 patients with stable disease. The 15 patients with NSCLC and treatment duration of more than 2 weeks with single agent AXL1717 in 3rd or 4th line showed a median time to progression of 31 weeks and a survival time of 60 weeks with 4 patients being alive at cut-off. Down-regulation of IGF-1R on granulocytes and increases of serum IGF-1 were seen. The systemic exposure of AXL1717 was dose-dependent and sufficient for antitumor effects. Conclusions: AXL1717 has a good safety profile and demonstrated promising clinical benefits in this severely ill and heavily pretreated patient cohort, especially in patients with NSCLC.


1991 ◽  
Vol 19 (4) ◽  
pp. 393-402
Author(s):  
Ravi Shrivastava ◽  
Gareth W. John ◽  
Ginette Rispat ◽  
Annick Chevalier ◽  
Roy Massingham

All new chemical entities synthesised in our laboratories have routinely been subjected to in vitro toxicity tests. Out of curiosity, we established a working hypothesis in which the in vitro data could be empirically transformed to predict the in vivo four-week standard maximum tolerated dose (MTD) studies in rats and dogs. As a first step to verifying this hypothesis, we report here the findings of an in vitro cytotoxicity study of 25 compounds randomly selected from our files, possessing a wide range of pharmacological activities and for which data from standard four-week MTD studies were available. Single blind in vitro toxicity studies in three carefully selected types of primary and cell line cultures were carried out. In vitro CT50 (concentration inducing 50% cell death) and CT100 (concentration inducing 100% cell death) values were obtained for each of the three cell types and, using empirical assumptions, these results were used to predict the MTD in vivo in the rat and dog. The actual in vivo threshold and toxic doses were obtained from the MTD study reports. The in vivo toxicity values predicted from the in vitro toxicity results with this series of 25 compounds showed a better than 80% correlation with the actual in vivo results obtained in the MTD studies. Whether or not in vitro cytotoxicity predictions are ultimately found to be directly and consistently related to the MTD in vivo for all pharmacological classes of compounds will require many additional studies, but it is hoped that these results will stimulate the necessary research effort required to answer this question.


1991 ◽  
Vol 30 (01) ◽  
pp. 35-39 ◽  
Author(s):  
H. S. Durak ◽  
M. Kitapgi ◽  
B. E. Caner ◽  
R. Senekowitsch ◽  
M. T. Ercan

Vitamin K4 was labelled with 99mTc with an efficiency higher than 97%. The compound was stable up to 24 h at room temperature, and its biodistribution in NMRI mice indicated its in vivo stability. Blood radioactivity levels were high over a wide range. 10% of the injected activity remained in blood after 24 h. Excretion was mostly via kidneys. Only the liver and kidneys concentrated appreciable amounts of radioactivity. Testis/soft tissue ratios were 1.4 and 1.57 at 6 and 24 h, respectively. Testis/blood ratios were lower than 1. In vitro studies with mouse blood indicated that 33.9 ±9.6% of the radioactivity was associated with RBCs; it was washed out almost completely with saline. Protein binding was 28.7 ±6.3% as determined by TCA precipitation. Blood clearance of 99mTc-l<4 in normal subjects showed a slow decrease of radioactivity, reaching a plateau after 16 h at 20% of the injected activity. In scintigraphic images in men the testes could be well visualized. The right/left testis ratio was 1.08 ±0.13. Testis/soft tissue and testis/blood activity ratios were highest at 3 h. These ratios were higher than those obtained with pertechnetate at 20 min post injection.99mTc-l<4 appears to be a promising radiopharmaceutical for the scintigraphic visualization of testes.


1997 ◽  
Vol 77 (04) ◽  
pp. 725-729 ◽  
Author(s):  
Mario Colucci ◽  
Silvia Scopece ◽  
Antonio V Gelato ◽  
Donato Dimonte ◽  
Nicola Semeraro

SummaryUsing an in vitro model of clot lysis, the individual response to a pharmacological concentration of recombinant tissue plasminogen activator (rt-PA) and the influence on this response of the physiological variations of blood parameters known to interfere with the fibrinolytic/thrombolytic process were investigated in 103 healthy donors. 125I-fibrin labelled blood clots were submersed in autologous plasma, supplemented with 500 ng/ml of rt-PA or solvent, and the degree of lysis was determined after 3 h of incubation at 37° C. Baseline plasma levels of t-PA, plasminogen activator inhibitor 1 (PAI-1), plasminogen, α2-anti-plasmin, fibrinogen, lipoprotein (a), thrombomodulin and von Willebrand factor as well as platelet and leukocyte count and clot retraction were also determined in each donor. rt-PA-induced clot lysis varied over a wide range (28-75%) and was significantly related to endogenous t-PA, PAI-1, plasminogen (p <0.001) and age (p <0.01). Multivariate analysis indicated that both PAI-1 antigen and plasminogen independently predicted low response to rt-PA. Surprisingly, however, not only PAI-1 but also plasminogen was negatively correlated with rt-PA-ginduced clot lysis. The observation that neutralization of PAI-1 by specific antibodies, both in plasma and within the clot, did not potentiate clot lysis indicates that the inhibitor, including the platelet-derived form, is insufficient to attenuate the thrombolytic activity of a pharmacological concentration of rt-PA and that its elevation, similarly to the elevation of plasminogen, is not the cause of clot resistance but rather a coincident finding. It is concluded that the in vitro response of blood clots to rt-PA is poorly influenced by the physiological variations of the examined parameters and that factors other than those evaluated in this study interfere with clot dissolution by rt-PA. In vitro clot lysis test might help to identify patients who may be resistant to thrombolytic therapy.


Growth regulators, phytohormones, both natural and artificial, are the main means to control plant ontogenesis. They are involved in regulating the processes of cell differentiation and cell divisions, the formation of tissues and organs, the changes in the rate of growth and development, the duration of the certain stages of ontogenesis. The main classes of phytohormones used in plant biotechnology, in particular, in the induction of haploid structures, are auxins and cytokinins. The mechanism of action of phytohormones on a cell is rather complicated and may have a different character. Understanding the characteristics of the action of phytohormones is complicated by the fact that the system of hormonal regulation of plant life is multicomponent. This is manifested in the fact that the same physiological process is most often influenced not by one, but by several phytohormones, covering a wide range of aspects of cell metabolism. In connection with the foregoing, the purpose of our work was to test a set of nutrient media with different basic composition and different proportions of phytohormones to determine the patterns of their influence on the processes of haploid structure induction in rape anther culture using accessions, developed at the Institute of Oilseed Crops NAAS. The material used was two accessions of winter rapeseed (No. 1 and No. 2) and one sample of spring rapeseed, provided by the Rapeseed Breeding laboratory of the Institute of Oilseed Crops. Incised inflorescences were kept against the background of low temperature of 6–8 ° C for several days, and then, under aseptic conditions, anthers with unripe pollen grains were isolated and planted on nutrient media differing in both basic mineral composition and content of phytohormones. MS (Murashige & Skoog 1962) and B5 (Gamborg et al 1968) media were used as basic media. Phytohormones were added to the basic media in various combinations – BA, 2,4-D, NAA at the concentrations of 0.1-0.6 mg/l. In each treatment up to 300 anthers were cultivated. Differences between treatments were evaluated using standard t-test. Studies have shown that in the anther culture of rapeseed on the tested nutrient media, morphogenic structures of different types (embryoids and callus) were originated. Synthetic auxin 2,4-D, regardless of the composition of the basic medium, caused the formation of structures of both types, though with a low frequency. Phytohormone BA of the cytokinin type had a similar effect. In this case, the frequency of structures was slightly higher, and the developed structures were represented mainly by embryoids. The joint action of cytokinin and auxin was the most favorable for the initiation of morphogenic structures. Such combination of phytohormones caused the formation of these structures with a frequency of 24.5-14.7% in the studied genotypes of winter rape. A similar effect of phytohormones on the induction and development of morphogenic structures was also observed in spring rape. In this case, a single basic MS medium was used. The experiment included treatments where phytohormones were absent (control), as well as various combinations of auxin and cytokinin. In the control treatment, the formation of new structures was not noted. In treatments with phytohormones, in addition to the medium with the combination of auxin and cytokinin, the medium in which only cytokinin was present was also rather effective. The treatment in which the action of auxin 2,4-D was combined with the action of another auxin, NAA, turned out to be practically ineffective. Thus, it was found that for the induction of morphogenic structures from microspores in rape anther culture of the tested genotypes, the combination of cytokinin with auxin, or the use of only single cytokinin BA without other phytohormones, had the most positive effect.


Author(s):  
Roohi Mohi-ud-din ◽  
Reyaz Hassan Mir ◽  
Prince Ahad Mir ◽  
Saeema Farooq ◽  
Syed Naiem Raza ◽  
...  

Background: Genus Berberis (family Berberidaceae), which contains about 650 species and 17 genera worldwide, has been used in folklore and various traditional medicine systems. Berberis Linn. is the most established group among genera with around 450-500 species across the world. This comprehensive review will not only help researchers for further evaluation but also provide substantial information for future exploitation of species to develop novel herbal formulations. Objective: The present review is focussed to summarize and collect the updated review of information of Genus Berberis species reported to date regarding their ethnomedicinal information, chemical constituents, traditional/folklore use, and reported pharmacological activities on more than 40 species of Berberis. Conclusion: A comprehensive survey of the literature reveals that various species of the genus possess various phytoconstituents mainly alkaloids, flavonoid based compounds isolated from different parts of a plant with a wide range of pharmacological activities. So far, many pharmacological activities like anti-cancer, anti-hyperlipidemic, hepatoprotective, immunomodulatory, anti-inflammatory both in vitro & in vivo and clinical study of different extracts/isolated compounds of different species of Berberis have been reported, proving their importance as a medicinal plant and claiming their traditional use.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


Author(s):  
Shangfei Wei ◽  
Tianming Zhao ◽  
Jie Wang ◽  
Xin Zhai

: Allostery is an efficient and particular regulatory mechanism to regulate protein functions. Different from conserved orthosteric sites, allosteric sites have distinctive functional mechanism to form the complex regulatory network. In drug discovery, kinase inhibitors targeting the allosteric pockets have received extensive attention for the advantages of high selectivity and low toxicity. The approval of trametinib as the first allosteric inhibitor validated that allosteric inhibitors could be used as effective therapeutic drugs for treatment of diseases. To date, a wide range of allosteric inhibitors have been identified. In this perspective, we outline different binding modes and potential advantages of allosteric inhibitors. In the meantime, the research processes of typical and novel allosteric inhibitors are described briefly in terms of structureactivity relationships, ligand-protein interactions and in vitro and in vivo activity. Additionally, challenges as well as opportunities are presented.


Sign in / Sign up

Export Citation Format

Share Document