scholarly journals Repurposing the yeast peroxisome to compartmentalize a toxic enzyme enables improved (S)-reticuline production

2020 ◽  
Author(s):  
Parbir S. Grewal ◽  
Jennifer A. Samson ◽  
Jordan J. Baker ◽  
Brian Choi ◽  
John E. Dueber

AbstractEukaryotic cells compartmentalize metabolic pathways in organelles to achieve optimal reaction conditions and avoid crosstalk with other factors in the cytosol. Increasingly, engineers are researching ways in which synthetic compartmentalization could be used to address challenges in metabolic engineering. Here, we identified that norcoclaurine synthase (NCS), the enzyme which catalyzes the first committed reaction in benzylisoquinoline alkaloid (BIA) biosynthesis, is toxic when expressed cytosolically in Saccharomyces cerevisiae and, consequently, restricts (S)-reticuline production. We developed a compartmentalization strategy that alleviates NCS toxicity while promoting increased (S)-reticuline titer, achieved through efficient targeting of toxic NCS to the peroxisome while, crucially, taking advantage of the free flow of metabolite substrates and product across the peroxisome membrane. We identified that peroxisome protein capacity in S. cerevisiae becomes a limiting factor for further improvement of BIA production and demonstrate that expression of engineered transcription factors can mimic the oleate response for larger peroxisomes, further increasing BIA titer without the requirement for peroxisome induction with fatty acids. This work specifically addresses the challenges associated with toxic NCS expression and, more broadly, highlights the potential for engineering organelles with desired characteristics for metabolic engineering.

2016 ◽  
Vol 34 ◽  
pp. 36-43 ◽  
Author(s):  
Ai-Qun Yu ◽  
Nina Kurniasih Pratomo Juwono ◽  
Jee Loon Foo ◽  
Susanna Su Jan Leong ◽  
Matthew Wook Chang

2021 ◽  
Author(s):  
◽  
Florian Wernig

The oleochemical and petrochemical industries provide diverse chemicals used in personal care products, food and pharmaceutical industries or as fuels, oils, polymers and others. However, fossil resources are dwindling and concerns about these conventional production methods have risen due to their strong negative impact on the environment and contribution to climate change. Therefore, alternative, sustainable and environmentally friendly production methods for oleochemical compounds such as fatty acids, fatty alcohols, hydroxy fatty acids and dicarboxylic acids are desired. The biotechnological production by engineered microorganism could fulfill these requirements. The concept of metabolic engineering, which is the modification of metabolic pathways of a host organism for increased production of a target compound, is a widely used strategy in biotechnology to generate cell factories or chassis strains for robust, efficient and high production. In this work, the versatile model and industrial yeast Saccharomyces cerevisiae was manipulated by metabolic engineering strategies for increased production of the medium-chain fatty acid octanoic acid and de novo production the derived 8-hydroxyoctanoic acid. Octanoic acid production was enabled by the fatty acid biosynthesis pathway by use of a mutated fatty acid synthase (FASRK) in a wild type FAS deficient strain. The yeast fatty acid synthase (FAS) consists of two polypeptides, α and β, which assemble to a α6β6 complex in a co-translational manner by interaction of the subunits. Because this step might be subject to cellular regulation, the α- and β- subunits of fatty acid synthase were fused to form a single-chain construct (fusFASRK), which displayed superior octanoic acid production compared with split FASRK. Thus, FASRK expression was identified as a limiting step of octanoic acid production. But the strains that produce octanoic acid have a severe growth defect that is undesirable for biotechnological applications and could lead to lower production titers. One reason is the strong inhibitory effect of octanoic acid. Another possibility is that the mutant FAS no longer produces enough essential long-chain fatty acids. To compensate for this, the mutated split and fused FAS variants were co-expressed individually in a strain harboring genomic wild type FAS alleles. In addition, mutant and wild type variants of fused and split FAS were co-expressed together in a FAS deficient strain. However, both cases resulted in decreased octanoic acid titers potentially by physical and/or metabolic crosstalk of the FAS variants. The fatty acid biosynthesis relies on cytosolic acetyl-CoA for initiation and derived malonyl-CoA for elongation and requires NADPH for reductive power. To increase production of octanoic acid, engineering strategies for increased acetyl-CoA and NADHP supply were investigated. First, the flux through the native cytosolic acetyl-CoA and NADPH providing pyruvate dehydrogenase bypass was enhanced by overexpression of the target genes ADH2, ALD6 and ACSL461P from Salmonella enterica in combination or individually. Next, the acety-CoA forming heterologous phosphoketolase/phosphotransacetylase pathway was expressed and NADPH formation was increased by redirecting the flux of glucose-6-phosphate into the NADPH producing oxidative branch of the pentose phosphate pathway. In particular, the flux through glycolysis and pyruvate dehydrogenase bypass was reduced by downregulating the expression of the phosphoglucose isomerase PGI1 and deleting the acetaldehyde dehydrogenase ALD6. Glucose-6-phosphate was guided into the pentose phosphate pathway by overexpressing the glucose-6-phosphate dehydrogenase ZWF1. The first approach did not influence octanoic acid production but the latter increased yields in the glucose consumption phase by 65 %. However, combining the superior fusFASRK with acetyl-CoA and NADPH supply engineering strategies did not result in additive production effects, indicating that other limitations hinder high octanoic acid accumulation. Limitations could be caused in particular by the strong inhibitory effects of octanoic acid or by intrinsic limitations of the FASRK mutant. To enlarge the octanoic acid production platform towards other derived valuable oleochemical compounds the de novo production of 8-hydroxyoctanoic acid was targeted. Since short- and medium-chain fatty acids have a strong inhibitory effect on Saccharomyces cerevisiae, the inhibitory effect of hydroxy fatty acid and dicarboxylic with eight or ten carbon atoms were compared and revealed only little or no growth impairment. Subsequently, the formation of 8-hydroxyoctanoic acid was targeted by a terminal hydroxylation of externally supplied octanoic acid in a bioconversion. For that, three heterologous genes, encoding for cytochromes P450 enzymes and their cognate cytochrome P450 reductases were expressed and 8-hydroxyoctanoic acid production was compared. In addition, the use of different carbon sources was compared. ...


2017 ◽  
Vol 14 (6) ◽  
pp. 883-903 ◽  
Author(s):  
Boppudi Hari Babu ◽  
Gandavaram Syam Prasad ◽  
Chamarthi Naga Raju ◽  
Mandava Venkata Basaveswara Rao

Background: Michaelis–Arbuzov reaction has played a key role for the synthesis of dialkyl or diaryl phosphonates by reacting various alkyl or aryl halides with trialkyl or triaryl phosphite. This reaction is very versatile in the formation of P-C bond from the reaction of aliphatic halides with phosphinites or phosphites to yield phosphonates, phosphinates, phosphine oxides. The Arbuzov reaction developed some methodologies, possible mechanistic pathways, selectivity, potential applications and biologically active various phosphonates. Objective: The synthesis of phosphonates via Michaelis–Arbuzov reaction with many new and fascinating methodologies were developed and disclosed in the literature, and these are explored in this review. Conclusion: This review has discussed past developments and vast potential applications of Arbuzov reaction in the synthesis of organophosphonates. As presented in this review, various synthetic methodologies were developed to prepare a large variety of phosphonates. Improvements in the reaction conditions of Lewis-acid mediated Arbuzov rearrangement as well as the development of MW-assisted Arbuzov rearrangement were discussed. Finally, to achieve high selectivities and yields, fine-tuning of reaction conditions including solvent type, temperature, and optimal reaction times to be considered.


1979 ◽  
Vol 44 (11) ◽  
pp. 3395-3404 ◽  
Author(s):  
Pavel Posádka ◽  
Lumír Macholán

An oxygen electrode of the Clark type, coated by a thin, active layer of chemically insolubilized ascorbate oxidase from squash peelings specifically detects by measuring oxygen uptake 10 to 400 μg of ascorbic acid in 3 ml of phosphate buffer. The record of current response to substrate addition lasts 1-2 min. The ascorbic acid values determined in various samples of fruit juices are in good agreement with the data obtained by titration and polarography. The suitable composition of the membrane and its lifetime and stability during long-term storage are described; optimal reaction conditions of vitamin C determination and the possibilities of interference of other compounds are also examined. Of the 35 phenols, aromatic amines and acids tested chlorogenic acid only can cause a positive error provided that the enzyme membrane has been prepared from ascorbate oxidase of high purity.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1809
Author(s):  
Zhanzhi Liu ◽  
Ying Li ◽  
Jing Wu ◽  
Sheng Chen

d-mannose has exhibited excellent physiological properties in the food, pharmaceutical, and feed industries. Therefore, emerging attention has been applied to enzymatic production of d-mannose due to its advantage over chemical synthesis. The gene age of N-acetyl-d-glucosamine 2-epimerase family epimerase/isomerase (AGEase) derived from Pseudomonas geniculata was amplified, and the recombinant P. geniculata AGEase was characterized. The optimal temperature and pH of P. geniculata AGEase were 60 °C and 7.5, respectively. The Km, kcat, and kcat/Km of P. geniculata AGEase for d-mannose were 49.2 ± 8.5 mM, 476.3 ± 4.0 s−1, and 9.7 ± 0.5 s−1·mM−1, respectively. The recombinant P. geniculata AGEase was classified into the YihS enzyme subfamily in the AGE enzyme family by analyzing its substrate specificity and active center of the three-dimensional (3D) structure. Further studies on the kinetics of different substrates showed that the P. geniculata AGEase belongs to the d-mannose isomerase of the YihS enzyme. The P. geniculata AGEase catalyzed the synthesis of d-mannose with d-fructose as a substrate, and the conversion rate was as high as 39.3% with the d-mannose yield of 78.6 g·L−1 under optimal reaction conditions of 200 g·L−1d-fructose and 2.5 U·mL−1P. geniculata AGEase. This novel P. geniculata AGEase has potential applications in the industrial production of d-mannose.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2532 ◽  
Author(s):  
Md. Nahid Pervez ◽  
Felix Y. Telegin ◽  
Yingjie Cai ◽  
Dongsheng Xia ◽  
Tiziano Zarra ◽  
...  

In this study, a Fenton-activated persulfate (Fe2+/PS) system was introduced for the efficient degradation of Mordant Blue 9 (MB 9) as a textile dye in an aqueous solution. Results showed that the degradation of MB 9 was markedly influenced by operational parameters, such as initial pH, PS concentration, Fe2+ concentration, and initial dye concentration. Optimal reaction conditions were then determined. Inorganic anions, such as Cl− and HCO3−, enhanced the degradation efficiency of MB 9 under optimal conditions. Addition of HCO3− reduced the degradation performance of MB 9, whereas the addition of Cl− increased the degradation percentage of MB 9. In addition, quenching experiments were conducted using methanol and tert-butyl alcohol as scavengers, and methanol was identified as an effective scavenger. Thus, the degradation of MB 9 was attributed to S O 4 • − and •OH radicals. The degradation and mineralization efficiency of MB 9 was significantly reduced using the conventional Fenton process i.e., Fe2+/ hydrogen peroxide (HP) because of the formation of a Fe complex during degradation. Meanwhile, the Fe2+/persulfate (PS) system improved the degradation and mineralization performance.


Author(s):  
Timothy Aljoscha Frede ◽  
Marlene Dietz ◽  
Norbert Kockmann

AbstractFast chemical process development is inevitably linked to an optimized determination of thermokinetic data of chemical reactions. A miniaturized flow calorimeter enables increased sensitivity when examining small amounts of reactants in a short time compared to traditional batch equipment. Therefore, a methodology to determine optimal reaction conditions for calorimetric measurement experiments was developed and is presented in this contribution. Within the methodology, short-cut calculations are supplemented by computational fluid dynamics (CFD) simulations for a better representation of the hydrodynamics within the microreactor. This approach leads to the effective design of experiments. Unfavourable experimental conditions for kinetics experiments are determined in advance and therefore, need not to be considered during design of experiments. The methodology is tested for an instantaneous acid-base reaction. Good agreement of simulations was obtained with experimental data. Thus, the prediction of the hydrodynamics is enabled and the first steps towards a digital twin of the calorimeter are performed. The flow rates proposed by the methodology are tested for the determination of reaction enthalpy and showed that reasonable experimental settings resulted. Graphical abstract A methodology is suggested to evaluate optimal reaction conditions for efficientacquisition of kinetic data. The experimental design space is limited by thestepwise determination of important time scales based on specified input data.


Sign in / Sign up

Export Citation Format

Share Document