scholarly journals Syd/JIP3 Controls Tissue Size by Regulating Diap1 Protein Turnover Downstream of Yorkie/YAP

2020 ◽  
Author(s):  
Vakil Ahmad ◽  
Gangadhar P. Vadla ◽  
Chiswili Y. Chabu

AbstractHow organisms control organ size is not fully understood. We found that Syd/JIP3 is required for proper wing size in Drosophila. JIP3 mutations are associated with organ size defects in mammals. The underlying mechanisms are not well understood. We discovered that Syd/JIP3 inhibition results in a downregulation of the inhibitor of apoptosis protein1 (Diap1) in the Drosophila wing. Correspondingly, Syd/JIP3 deficient tissues exhibit ectopic cell death and yield smaller wings. Syd/JIP3 inhibition generated similar effects in mammalian cells, indicating a conserved mechanism. We found that Yorkie/YAP stimulates Syd/JIP3 in Drosophila and mammalian cells. Notably, Syd/JIP3 is required for the full effect of Yorkie-mediated tissue growth. Thus Syd/JIP3 regulation of Diap1 functions downstream of Yorkie/YAP to control growth.This study provides mechanistic insights into the recent and perplexing link between JIP3 mutations and organ size defects in mammals, including in humans where de novo JIP3 variants are associated with microcephaly.HighlightsSyd/JIP3 is required for proper Drosophila wing sizeSyd/JIP3 stabilizes Diap1 to inhibit cell death in Drosophila and in mammalian cellsActivation of Yorkie/YAP stimulates Syd/JIP3Yorkie-mediated tissue growth is highly sensitive to Syd/JIP3 dosage

Author(s):  
Ali A Zaied ◽  
Halis K Akturk ◽  
Richard W Joseph ◽  
Augustine S Lee

Summary Nivolumab, a monoclonal antibody against programmed cell death-1 receptor, is increasingly used in advanced cancers. While nivolumab use enhances cancer therapy, it is associated with increased immune-related adverse events. We describe an elderly man who presented in ketoacidosis after receiving nivolumab for metastatic renal cell carcinoma. On presentation, he was hyperpneic and laboratory analyses showed hyperglycemia and anion-gapped metabolic acidosis consistent with diabetic ketoacidosis. No other precipitating factors, besides nivolumab, were identified. Pre-nivolumab blood glucose levels were normal. The patient responded to treatment with intravenous fluids, insulin and electrolyte replacement. He was diagnosed with insulin-dependent autoimmune diabetes mellitus secondary to nivolumab. Although nivolumab was stopped, he continued to require multiple insulin injection therapy till his last follow-up 7 months after presentation. Clinicians need to be alerted to the development of diabetes mellitus and diabetic ketoacidosis in patients receiving nivolumab. Learning points: Diabetic ketoacidosis should be considered in the differential of patients presenting with metabolic acidosis following treatment with antibodies to programmed cell death-1 receptor (anti-PD-1). Autoimmune islet cell damage is the presumed mechanism for how insulin requiring diabetes mellitus can develop de novo following administration of anti-PD-1. Because anti-PD-1 works by the activation of T-cells and reduction of ‘self-tolerance’, other autoimmune disorders are likely to be increasingly recognized with increased use of these agents.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Masayuki Noguchi ◽  
Noriyuki Hirata ◽  
Tsutomu Tanaka ◽  
Futoshi Suizu ◽  
Hiroshi Nakajima ◽  
...  

Abstract The balance between cell death and survival is a critical parameter in the regulation of cells and the maintenance of homeostasis in vivo. Three major mechanisms for cell death have been identified in mammalian cells: apoptosis (type I), autophagic cell death (type II), and necrosis (type III). These three mechanisms have been suggested to engage in cross talk with each other. Among them, autophagy was originally characterized as a cell survival mechanism for amino acid recycling during starvation. Whether autophagy functions primarily in cell survival or cell death is a critical question yet to be answered. Here, we present a comprehensive review of the cell death-related events that take place during autophagy and their underlying mechanisms in cancer and autoimmune disease development.


2019 ◽  
Author(s):  
Sachendra S. Bais ◽  
Yashika Ratra ◽  
Pramod K. Kushawaha ◽  
Soumen Basak

SummaryIn response to infection by RNA viruses, mammalian cells typically activate RelA-containing NF-κB heterodimers, which induce genes encoding interferon-β and other antiviral mediators. Therefore, RelA is commonly thought to function as an anti-viral transcription factor. Notably, virus-specific mechanisms often modify mainstay immune pathways. Despite its human health relevance, how Chandipura virus (CHPV) per se interacts with the cellular signaling machinery has not been investigated. Here, we report that RelA deficiency abrogated antiviral gene expressions and yet surprisingly caused diminished growth of CHPV in mouse embryonic fibroblasts. Our experimental studies clarified that RelA-dependent synthesis of pro-survival factors restrained infection-inflicted cell death, and that exacerbated cell death processes prevented multiplication of CHPV in RelA-deficient cells. In sum, we identify a pro-viral function of the immune-activating transcription factor RelA NF-κB linked to its pro-survival properties.HighlightsLack of RelA NF-κB leads to reduced growth of CHPV ex vivoRelA deficiency exacerbates cell-death processes upon CHPV infectionInhibition of cell-death processes restores CHPV multiplication in RelA-deficient MEFs


2020 ◽  
Vol 27 (6) ◽  
pp. 955-982 ◽  
Author(s):  
Kyoung Sang Cho ◽  
Jang Ho Lee ◽  
Jeiwon Cho ◽  
Guang-Ho Cha ◽  
Gyun Jee Song

Background: Neuroinflammation plays a critical role in the development and progression of various neurological disorders. Therefore, various studies have focused on the development of neuroinflammation inhibitors as potential therapeutic tools. Recently, the involvement of autophagy in the regulation of neuroinflammation has drawn substantial scientific interest, and a growing number of studies support the role of impaired autophagy in the pathogenesis of common neurodegenerative disorders. Objective: The purpose of this article is to review recent research on the role of autophagy in controlling neuroinflammation. We focus on studies employing both mammalian cells and animal models to evaluate the ability of different autophagic modulators to regulate neuroinflammation. Methods: We have mostly reviewed recent studies reporting anti-neuroinflammatory properties of autophagy. We also briefly discussed a few studies showing that autophagy modulators activate neuroinflammation in certain conditions. Results: Recent studies report neuroprotective as well as anti-neuroinflammatory effects of autophagic modulators. We discuss the possible underlying mechanisms of action of these drugs and their potential limitations as therapeutic agents against neurological disorders. Conclusion: Autophagy activators are promising compounds for the treatment of neurological disorders involving neuroinflammation.


Author(s):  
Morganna C. Lima ◽  
Elisa A. N. Azevedo ◽  
Clarice N. L. de Morais ◽  
Larissa I. O. de Sousa ◽  
Bruno M. Carvalho ◽  
...  

Background: Zika virus is an emerging arbovirus of global importance. ZIKV infection is associated with a range of neurological complications such as the Congenital Zika Syndrome and Guillain Barré Syndrome. Despite the magnitude of recent outbreaks, there is no specific therapy to prevent or to alleviate disease pathology. Objective: To investigate the role of P-MAPA immunomodulator in Zika-infected THP-1 cells. Methods: THP-1 cells were subjected at Zika virus infection (Multiplicity of Infection = 0.5) followed by treatment with P-MAPA for until 96 hours post-infection. After that, the cell death was analyzed by annexin+/ PI+ and caspase 3/ 7+ staining by flow cytometry. In addition, the virus replication and cell proliferation were accessed by RT-qPCR and Ki67 staining, respectively. Results: We demonstrate that P-MAPA in vitro treatment significantly reduces Zika virus-induced cell death and caspase-3/7 activation on THP-1 infected cells, albeit it has no role in virus replication and cell proliferation. Conclusions: Our study reveals that P-MAPA seems to be a satisfactory alternative to inhibits the effects of Zika virus infection in mammalian cells.


Author(s):  
Adam L. Numis ◽  
Gilberto da Gente ◽  
Elliott H. Sherr ◽  
Hannah C. Glass

Abstract Background The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. Methods Case–control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. Results Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. Conclusions In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. Impact We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.


Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 143-152 ◽  
Author(s):  
Siyuan Le ◽  
J Kent Moore ◽  
James E Haber ◽  
Carol W Greider

Abstract Telomere length is maintained by the de novo addition of telomere repeats by telomerase, yet recombination can elongate telomeres in the absence of telomerase. When the yeast telomerase RNA component, TLC1, is deleted, telomeres shorten and most cells die. However, gene conversion mediated by the RAD52 pathway allows telomere lengthening in rare survivor cells. To further investigate the role of recombination in telomere maintenance, we assayed telomere length and the ability to generate survivors in several isogenic DNA recombination mutants, including rad50, rad51, rad52, rad54, rad57, xrs2, and mre11. The rad51, rad52, rad54, and rad57 mutations increased the rate of cell death in the absence of TLC1. In contrast, although the rad50, xrs2, and mre11 strains initially had short telomeres, double mutants with tlc1 did not affect the rate of cell death, and survivors were generated at later times than tlc1 alone. While none of the double mutants of recombination genes and tlc1 (except rad52 tlc1) blocked the ability to generate survivors, a rad50 rad51 tlc1 triple mutant did not allow the generation of survivors. Thus RAD50 and RAD51 define two separate pathways that collaborate to allow cells to survive in the absence of telomerase.


Author(s):  
Yan Liang ◽  
Xiaoli Sun ◽  
Mingjie Wang ◽  
Qingmiao Lu ◽  
Mengru Gu ◽  
...  

AbstractMacrophage accumulation and activation play an essential role in kidney fibrosis; however, the underlying mechanisms remain to be explored. By analyzing the kidney tissues from patients and animal models with kidney fibrosis, we found a large induction of PP2Acα in macrophages. We then generated a mouse model with inducible macrophage ablation of PP2Acα. The knockouts developed less renal fibrosis, macrophage accumulation, or tubular cell death after unilateral ureter obstruction or ischemic reperfusion injury compared to control littermates. In cultured macrophages, PP2Acα deficiency resulted in decreased cell motility by inhibiting Rap1 activity. Moreover, co-culture of PP2Acα−/− macrophages with tubular cells resulted in less tubular cell death attributed to downregulated Stat6-mediated tumor necrosis factor α (TNFα) production in macrophages. Together, this study demonstrates that PP2Acα promotes macrophage accumulation and activation, hence accelerates tubular cell death and kidney fibrosis through regulating Rap1 activation and TNFα production.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Reyaz ur Rasool ◽  
Bilal Rah ◽  
Hina Amin ◽  
Debasis Nayak ◽  
Souneek Chakraborty ◽  
...  

Abstract The eukaryotic translation initiation factor 4E (eIF4E) is considered as a key survival protein involved in cell cycle progression, transformation and apoptosis resistance. Herein, we demonstrate that medicinal plant derivative 3-AWA (from Withaferin A) suppressed the proliferation and metastasis of CaP cells through abrogation of eIF4E activation and expression via c-FLIP dependent mechanism. This translational attenuation prevents the de novo synthesis of major players of metastatic cascades viz. c-FLIP, c-Myc and cyclin D1. Moreover, the suppression of c-FLIP due to inhibition of translation initiation complex by 3-AWA enhanced FAS trafficking, BID and caspase 8 cleavage. Further ectopically restored c-Myc and GFP-HRas mediated activation of eIF4E was reduced by 3-AWA in transformed NIH3T3 cells. Detailed underlying mechanisms revealed that 3-AWA inhibited Ras-Mnk and PI3-AKT-mTOR, two major pathways through which eIF4E converges upon eIF4F hub. In addition to in vitro studies, we confirmed that 3-AWA efficiently suppressed tumor growth and metastasis in different mouse models. Given that 3-AWA inhibits c-FLIP through abrogation of translation initiation by co-targeting mTOR and Mnk-eIF4E, it (3-AWA) can be exploited as a lead pharmacophore for promising anti-cancer therapeutic development.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 692
Author(s):  
Sweta Talyan ◽  
Samantha Filipów ◽  
Michael Ignarski ◽  
Magdalena Smieszek ◽  
He Chen ◽  
...  

Diseases of the renal filtration unit—the glomerulus—are the most common cause of chronic kidney disease. Podocytes are the pivotal cell type for the function of this filter and focal-segmental glomerulosclerosis (FSGS) is a classic example of a podocytopathy leading to proteinuria and glomerular scarring. Currently, no targeted treatment of FSGS is available. This lack of therapeutic strategies is explained by a limited understanding of the defects in podocyte cell biology leading to FSGS. To date, most studies in the field have focused on protein-coding genes and their gene products. However, more than 80% of all transcripts produced by mammalian cells are actually non-coding. Here, long non-coding RNAs (lncRNAs) are a relatively novel class of transcripts and have not been systematically studied in FSGS to date. The appropriate tools to facilitate lncRNA research for the renal scientific community are urgently required due to a row of challenges compared to classical analysis pipelines optimized for coding RNA expression analysis. Here, we present the bioinformatic pipeline CALINCA as a solution for this problem. CALINCA automatically analyzes datasets from murine FSGS models and quantifies both annotated and de novo assembled lncRNAs. In addition, the tool provides in-depth information on podocyte specificity of these lncRNAs, as well as evolutionary conservation and expression in human datasets making this pipeline a crucial basis to lncRNA studies in FSGS.


Sign in / Sign up

Export Citation Format

Share Document