scholarly journals Interpreting the pathogenicity of Joubert Syndrome missense variants in Caenorhabditis elegans

2020 ◽  
Author(s):  
Karen I. Lange ◽  
Sofia Tsiropoulou ◽  
Katarzyna Kucharska ◽  
Oliver E. Blacque

ABSTRACTCiliopathies are inherited disorders caused by cilia defects. Variants in ciliopathy genes are frequently pleiotropic and represent excellent case studies for interrogating genotype-phenotype correlation. We have employed Caenorhabditis elegans and gene editing to characterise two pathogenic biallelic missense variants (P74S, G155S) in B9D2/mksr-2 associated with Joubert Syndrome (JBTS). B9D2 functions within the MKS module at the transition zone (TZ) ciliary subcompartment, and regulates the cilium’s molecular composition and signaling function. Quantitative assays of cilium/TZ structure and function, together with knock-in reporters, confirm both variant alleles are pathogenic. G155S causes a more severe overall phenotype and disrupts endogenous MKSR-2 organisation at the TZ. Recapitulation of the patient biallelic genotype shows that heterozygous worms phenocopy worms homozygous for P74S. This study also reveals a close functional association between the B9 complex and TMEM216/MKS-2. These data establish C. elegans as a paradigm for interpreting JBTS mutations, and provide insight into MKS module organisation.

2020 ◽  
pp. dmm.046631
Author(s):  
Karen I. Lange ◽  
Sofia Tsiropoulou ◽  
Katarzyna Kucharska ◽  
Oliver E. Blacque

Ciliopathies are inherited disorders caused by defects in motile and non-motile (primary) cilia. Ciliopathy syndromes and associated gene variants are often highly pleiotropic and represent exemplars for interrogating genotype-phenotype correlations. Towards understanding disease mechanisms in the context of ciliopathy mutations, we have employed a leading model organism for cilia and ciliopathy research, Caenorhabditis elegans, together with gene editing, to characterise two missense variants (P74S, G155S) in B9D2/mksr-2 associated with Joubert Syndrome (JBTS). B9D2 functions within the Meckel syndrome (MKS) module at the ciliary base transition zone (TZ) compartment, and regulates the cilium's molecular composition and sensory/signaling functions. Quantitative assays of cilium/TZ structure and function, together with knock-in reporters, confirm both variant alleles are pathogenic in worms. G155S causes a more severe overall phenotype and disrupts endogenous MKSR-2 organisation at the TZ. Recapitulation of the patient biallelic genotype shows that compound heterozygous worms phenocopy worms homozygous for P74S. The P74S and G155S alleles also reveal evidence of a very close functional association between the B9D2-associated B9 complex and TMEM216/MKS-2. Together, these data establish C. elegans as a paradigm for interpreting JBTS mutations, and provide further insight into MKS module organisation.


2008 ◽  
Vol 19 (5) ◽  
pp. 2154-2168 ◽  
Author(s):  
Corey L. Williams ◽  
Marlene E. Winkelbauer ◽  
Jenny C. Schafer ◽  
Edward J. Michaud ◽  
Bradley K. Yoder

Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP), and Joubert syndrome (JBTS) are a group of heterogeneous cystic kidney disorders with partially overlapping loci. Many of the proteins associated with these diseases interact and localize to cilia and/or basal bodies. One of these proteins is MKS1, which is disrupted in some MKS patients and contains a B9 motif of unknown function that is found in two other mammalian proteins, B9D2 and B9D1. Caenorhabditis elegans also has three B9 proteins: XBX-7 (MKS1), TZA-1 (B9D2), and TZA-2 (B9D1). Herein, we report that the C. elegans B9 proteins form a complex that localizes to the base of cilia. Mutations in the B9 genes do not overtly affect cilia formation unless they are in combination with a mutation in nph-1 or nph-4, the homologues of human genes (NPHP1 and NPHP4, respectively) that are mutated in some NPHP patients. Our data indicate that the B9 proteins function redundantly with the nephrocystins to regulate the formation and/or maintenance of cilia and dendrites in the amphid and phasmid ciliated sensory neurons. Together, these data suggest that the human homologues of the novel B9 genes B9D2 and B9D1 will be strong candidate loci for pathologies in human MKS, NPHP, and JBTS.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 312
Author(s):  
Tina V. A. Hansen ◽  
Heinz Sager ◽  
Céline E. Toutain ◽  
Elise Courtot ◽  
Cédric Neveu ◽  
...  

Natural plant compounds, such as betaine, are described to have nematocidal properties. Betaine also acts as a neurotransmitter in the free-living model nematode Caenorhabditis elegans, where it is required for normal motility. Worm motility is mediated by nicotinic acetylcholine receptors (nAChRs), including subunits from the nematode-specific DEG-3 group. Not all types of nAChRs in this group are associated with motility, and one of these is the DEG-3/DES-2 channel from C. elegans, which is involved in nociception and possibly chemotaxis. Interestingly, the activity of DEG-3/DES-2 channel from the parasitic nematode of ruminants, Haemonchus contortus, is modulated by monepantel and its sulfone metabolite, which belong to the amino-acetonitrile derivative anthelmintic drug class. Here, our aim was to advance the pharmacological knowledge of the DEG-3/DES-2 channel from C. elegans by functionally expressing the DEG-3/DES-2 channel in Xenopus laevis oocytes and using two-electrode voltage-clamp electrophysiology. We found that the DEG-3/DES-2 channel was more sensitive to betaine than ACh and choline, but insensitive to monepantel and monepantel sulfone when used as direct agonists and as allosteric modulators in co-application with betaine. These findings provide important insight into the pharmacology of DEG-3/DES-2 from C. elegans and highlight the pharmacological differences between non-parasitic and parasitic nematode species.


1994 ◽  
Vol 127 (1) ◽  
pp. 79-93 ◽  
Author(s):  
S Goetinck ◽  
R H Waterston

Mutations in the unc-87 gene of Caenorhabditis elegans affect the structure and function of bodywall muscle, resulting in variable paralysis. We cloned the unc-87 gene by taking advantage of a transposon-induced allele of unc-87 and the correspondence of the genetic and physical maps in C. elegans. A genomic clone was isolated that alleviates the mutant phenotype when introduced into unc-87 mutants. Sequence analysis of a corresponding cDNA clone predicts a 357-amino acid, 40-kD protein that is similar to portions of the vertebrate smooth muscle proteins calponin and SM22 alpha, the Drosophila muscle protein mp20, the deduced product of the C. elegans cDNA cm7g3, and the rat neuronal protein np25. Analysis of the genomic sequence and of various transcripts represented in a cDNA library suggest that unc-87 mRNAs are subject to alternative splicing. Immunohistochemistry of wildtype and mutant animals with antibodies to an unc-87 fusion protein indicates that the gene product is localized to the I-band of bodywall muscle. Studies of the UNC-87 protein in other muscle mutants suggest that the unc-87 gene product associates with thin filaments, in a manner that does not depend on the presence of the thin filament protein tropomyosin.


2018 ◽  
Author(s):  
Jason S. Watts ◽  
Henry F. Harrison ◽  
Shizue Omi ◽  
Quentin Guenthers ◽  
James Dalelio ◽  
...  

AbstractRNA interference is a powerful tool for dissecting gene function. In Caenorhabditis elegans, ingestion of double stranded RNA causes strong, systemic knockdown of target genes. Further insight into gene function can be revealed by tissue-specific RNAi techniques. Currently available tissue-specific C. elegans strains rely on rescue of RNAi function in a desired tissue or cell in an otherwise RNAi deficient genetic background. We attempted to assess the contribution of specific tissues to polyunsaturated fatty acid (PUFA) synthesis using currently available tissue-specific RNAi strains. We discovered that rde-1 (ne219), a commonly used RNAi-resistant mutant strain, retains considerable RNAi capacity against RNAi directed at PUFA synthesis genes. By measuring changes in the fatty acid products of the desaturase enzymes that synthesize PUFAs, we found that the before mentioned strain, rde-1 (ne219) and the reported germline only RNAi strain, rrf-1 (pk1417) are not appropriate genetic backgrounds for tissue-specific RNAi experiments. However, the knockout mutant rde-1 (ne300) was strongly resistant to dsRNA induced RNAi, and thus is more appropriate for construction of a robust tissue-specific RNAi strains. Using newly constructed strains in the rde-1(null) background, we found considerable desaturase activity in intestinal, epidermal, and germline tissues, but not in muscle. The RNAi-specific strains reported in this study will be useful tools for C. elegans researchers studying a variety of biological processes.


2020 ◽  
Author(s):  
Xia Li ◽  
Thomas L. Ingram ◽  
Ying Wang ◽  
Kamila Derecka ◽  
Nathan Courtier ◽  
...  

AbstractAgeing, the decline of biological functions over time, is inherent to eukaryotes. Female honeybees attain a long-lived queen phenotype upon continuous consumption of royal jelly, whereas restricted supply of this nutritional substance promotes the development of worker bees, which are short-lived. An abundant protein found within royal jelly is major royal jelly protein 1 (MRJP1), also known as ‘Royalactin’. Health- and lifespan promoting effects have been attributed to Royalactin in species from diverse animal taxa, suggesting it acts on phylogenetically conserved physiological processes. Here, we explore the effects of feeding the nematode Caenorhabditis elegans with Escherichia coli that express a recombinant form of Royalactin (RArec). We confirm that consumption of RArec increases body size, improves locomotion and extends lifespan. We discover a link between Royalactin and mitochondria, organelles which play a key part in the ageing process: both spare respiratory capacity and morphology indicate improved mitochondrial function in RArec fed C. elegans. These results demonstrate the feasibility of using recombinant Royalactin to gain further insight into processes of healthy ageing in many species.RArec production allows insight into potential beneficial effects across species.


2021 ◽  
Author(s):  
Mark G. Sterken ◽  
Lisa van Sluijs ◽  
Yiru A. Wang ◽  
Wannisa Ritmahan ◽  
Mitra L. Gultom ◽  
...  

Host-pathogen interactions play a major role in evolutionary selection and shape natural genetic variation. The genetically distinct Caenorhabditis elegans strains, Bristol N2 and Hawaiian CB4856, are differentially susceptible to the Orsay virus (OrV). Here we report the dissection of the genetic architecture of susceptibility to OrV infection. We compare OrV infection in the relatively resistant wild-type CB4856 strain to the more susceptible canonical N2 strain. To gain insight into the genetic architecture of viral susceptibility, 52 fully sequenced recombinant inbred lines (CB4856 x N2 RILs) were exposed to OrV. This led to the identification of two loci on chromosome IV associated with OrV resistance. To verify the two loci and gain additional insight into the genetic architecture controlling virus infection, introgression lines (ILs) that together cover chromosome IV, were exposed to OrV. Of the 27 ILs used, 17 had an CB4856 introgression in an N2 background and 10 had an N2 introgression in a CB4856 background. Infection of the ILs confirmed and fine-mapped the locus underlying variation in OrV susceptibility and we found that a single nucleotide polymorphism in cul-6 may contribute to the difference in OrV susceptibility between N2 and CB4856. An allele swap experiment showed the strain CB4856 became as susceptible as the N2 strain by having an N2 cul-6 allele, although having the CB4856 cul-6 allele did not increase resistance in N2. Additionally, we found that multiple strains with non-overlapping introgressions showed a distinct infection phenotype from the parental strain, indicating that there are punctuated locations on chromosome IV determining OrV susceptibility. Thus, our findings reveal the genetic complexity of OrV susceptibility in C. elegans and suggest that viral susceptibility is governed by multiple genes. Importance Genetic variation determines the viral susceptibility of hosts. Yet, pinpointing which genetic variants determine viral susceptibility remains challenging. Here, we have exploited the genetic tractability of the model organism C. elegans to dissect the genetic architecture of Orsay virus infection. Our results provide novel insight into natural determinants of Orsay virus infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paloma García-Casas ◽  
Pilar Alvarez-Illera ◽  
Eva Gómez-Orte ◽  
Juan Cabello ◽  
Rosalba I. Fonteriz ◽  
...  

We have reported recently that the mitochondrial Na+/Ca2+ exchanger inhibitor CGP37157 extends lifespan in Caenorhabditis elegans by a mechanism involving mitochondria, the TOR pathway and the insulin/IGF1 pathway. Here we show that CGP37157 significantly improved the evolution with age of the sarcomeric regular structure, delaying development of sarcopenia in C. elegans body wall muscle and increasing the average and maximum speed of the worms. Similarly, CGP37157 favored the maintenance of a regular mitochondrial structure during aging. We have also investigated further the mechanism of the effect of CGP37157 by studying its effect in mutants of aak-1;aak-2/AMP-activated kinase, sir-2.1/sirtuin, rsks-1/S6 kinase and daf-16/FOXO. We found that this compound was still effective increasing lifespan in all these mutants, indicating that these pathways are not involved in the effect. We have then monitored pharynx cytosolic and mitochondrial Ca2+ signalling and our results suggest that CGP37157 is probably inhibiting not only the mitochondrial Na+/Ca2+ exchanger, but also Ca2+ entry through the plasma membrane. Finally, a transcriptomic study detected that CGP37157 induced changes in lipid metabolism enzymes and a four-fold increase in the expression of ncx-6, one of the C. elegans mitochondrial Na+/Ca2+ exchangers. In summary, CGP37157 increases both lifespan and healthspan by a mechanism involving changes in cytosolic and mitochondrial Ca2+ homeostasis. Thus, Ca2+ signalling could be a promising target to act on aging.


2018 ◽  
Vol 373 (1758) ◽  
pp. 20170372 ◽  
Author(s):  
Emma K. Towlson ◽  
Petra E. Vértes ◽  
Gang Yan ◽  
Yee Lian Chew ◽  
Denise S. Walker ◽  
...  

Control is essential to the functioning of any neural system. Indeed, under healthy conditions the brain must be able to continuously maintain a tight functional control between the system's inputs and outputs. One may therefore hypothesize that the brain's wiring is predetermined by the need to maintain control across multiple scales, maintaining the stability of key internal variables, and producing behaviour in response to environmental cues. Recent advances in network control have offered a powerful mathematical framework to explore the structure–function relationship in complex biological, social and technological networks, and are beginning to yield important and precise insights on neuronal systems. The network control paradigm promises a predictive, quantitative framework to unite the distinct datasets necessary to fully describe a nervous system, and provide mechanistic explanations for the observed structure and function relationships. Here, we provide a thorough review of the network control framework as applied to Caenorhabditis elegans (Yan et al. 2017 Nature 550 , 519–523. ( doi:10.1038/nature24056 )), in the style of Frequently Asked Questions. We present the theoretical, computational and experimental aspects of network control, and discuss its current capabilities and limitations, together with the next likely advances and improvements. We further present the Python code to enable exploration of control principles in a manner specific to this prototypical organism. This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.


Parasitology ◽  
1996 ◽  
Vol 113 (S1) ◽  
pp. S157-S173 ◽  
Author(s):  
R. E. Isaac ◽  
D. Macgregor ◽  
D. Coates

SUMMARYThe nematode nervous system employs many of the same neurotransmitters as are found in higher animals. The inactivation of neurotransmitters is absolutely essential for the correct functioning of the nervous system, In this article we discuss the various mechanisms used generally in animal nervous systems for synaptic inactivation of neurotransmitters and review the evidence for similar mechanisms operating in parasitic and free-living nematodes. The sequencing of the entireCaenorhabditis elegansgenome means that the sequence of nematode genes can be accessed from theC. elegansdatabase (ACeDB) and this wealth of information together with the increasing knowledge of the genetics of this free-living nematode will have great impact on all aspects of nematode neurobiology. The review will provide an insight into how this information may be exploited to identify and characterize target proteins for the development of novel anti-nematode drugs.


Sign in / Sign up

Export Citation Format

Share Document