scholarly journals Integrated genomic view of SARS-CoV-2 in India

Author(s):  
Pramod Kumar ◽  
Rajesh Pandey ◽  
Pooja Sharma ◽  
Mahesh S Dhar ◽  
A Vivekanand ◽  
...  

SUMMARYIndia first detected SARS-CoV-2, causal agent of COVID-19 in late January-2020, imported from Wuhan, China. March-2020 onwards; importation of cases from rest of the countries followed by seeding of local transmission triggered further outbreaks in India. We used ARTIC protocol based tiling amplicon sequencing of SARS-CoV-2 (n=104) from different states of India using a combination of MinION and MinIT from Oxford Nanopore Technology to understand introduction and local transmission. The analyses revealed multiple introductions of SARS-CoV-2 from Europe and Asia following local transmission. The most prevalent genomes with patterns of variance (confined in a cluster) remain unclassified, here, proposed as A4-clade based on its divergence within A-cluster. The viral haplotypes may link their persistence to geo-climatic conditions and host response. Despite the effectiveness of non-therapeutic interventions in India, multipronged strategies including molecular surveillance based on real-time viral genomic data is of paramount importance for a timely management of the pandemic.

2020 ◽  
Vol 5 ◽  
pp. 184 ◽  
Author(s):  
Pramod Kumar ◽  
Rajesh Pandey ◽  
Pooja Sharma ◽  
Mahesh S. Dhar ◽  
Vivekanand A. ◽  
...  

Background: India first detected SARS-CoV-2, causal agent of COVID-19 in late January 2020, imported from Wuhan, China. From March 2020 onwards, the importation of cases from countries in the rest of the world followed by seeding of local transmission triggered further outbreaks in India. Methods: We used ARTIC protocol-based tiling amplicon sequencing of SARS-CoV-2 (n=104) from different states of India using a combination of MinION and MinIT sequencing from Oxford Nanopore Technology to understand how introduction and local transmission occurred. Results: The analyses revealed multiple introductions of SARS-CoV-2 genomes, including the A2a cluster from Europe and the USA, A3 cluster from Middle East and A4 cluster (haplotype redefined) from Southeast Asia (Indonesia, Thailand and Malaysia) and Central Asia (Kyrgyzstan). The local transmission and persistence of genomes A4, A2a and A3 was also observed in the studied locations. The most prevalent genomes with patterns of variance (confined in a cluster) remain unclassified, and are here proposed as A4-clade based on its divergence within the A cluster. Conclusions: The viral haplotypes may link their persistence to geo-climatic conditions and host response. Multipronged strategies including molecular surveillance based on real-time viral genomic data is of paramount importance for a timely management of the pandemic.


2021 ◽  
Vol 6 ◽  
pp. 192
Author(s):  
Charles N. Agoti ◽  
George Githinji ◽  
Khadija S. Mohammed ◽  
Arnold W. Lambisia ◽  
Zaydah R. de Laurent ◽  
...  

Background. Genomic data is key in understanding the spread and evolution of SARS-CoV-2 pandemic and informing the design and evaluation of interventions. However, SARS-CoV-2 genomic data remains scarce across Africa, with no reports yet from the Indian Ocean islands. Methods. We genome sequenced six SARS-CoV-2 positive samples from the first major infection wave in the Union of Comoros in January 2021 and undertook detailed phylogenetic analysis. Results. All the recovered six genomes classified within the 501Y.V2 variant of concern (also known as lineage B.1.351) and appeared to be from 2 sub-clusters with the most recent common ancestor dated 30th Oct-2020 (95% Credibility Interval: 06th Sep-2020 to 10th Dec-2020). Comparison of the Comoros genomes with those of 501Y.V2 variant of concern from other countries deposited into the GISAID database revealed their close association with viruses identified in France and Mayotte (part of the Comoros archipelago and a France, Overseas Department). Conclusions. The recovered genomes, albeit few, confirmed local transmission following probably multiple introductions of the SARS-CoV-2 501Y.V2 variant of concern during the Comoros’s first major COVID-19 wave. These findings demonstrate the importance of genomic surveillance and have implications for ongoing control strategies on the islands.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Robert Player ◽  
Kathleen Verratti ◽  
Andrea Staab ◽  
Christopher Bradburne ◽  
Sarah Grady ◽  
...  

2021 ◽  
Author(s):  
Héctor Rodriguez-Perez ◽  
Laura Ciuffreda ◽  
Carlos Flores

Abstract The study of microbial communities and their applications have been leveraged by the advances in sequencing techniques and bioinformatics tools. The Oxford Nanopore Technologies long read sequencing by nanopores provides a portable and cost-efficient platform for sequencing assays opening the possibility of its application outside specialized environments and real-time analysis of data. To complement the existing efficient library preparation protocol with a streamlined analytic workflow, here we present NanoRTax, a nextflow pipeline for nanopore 16S rRNA amplicon data that features state-of-art taxonomic classification tools and real-time capability. The pipeline is paired with a web-based visual interface to enable user-friendly inspections of the experiment in progress.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 461
Author(s):  
Madjid Morsli ◽  
Quentin Kerharo ◽  
Jeremy Delerce ◽  
Pierre-Hugues Roche ◽  
Lucas Troude ◽  
...  

Current routine real-time PCR methods used for the point-of-care diagnosis of infectious meningitis do not allow for one-shot genotyping of the pathogen, as in the case of deadly Haemophilus influenzae meningitis. Real-time PCR diagnosed H. influenzae meningitis in a 22-year-old male patient, during his hospitalisation following a more than six-metre fall. Using an Oxford Nanopore Technologies real-time sequencing run in parallel to real-time PCR, we detected the H. influenzae genome directly from the cerebrospinal fluid sample in six hours. Furthermore, BLAST analysis of the sequence encoding for a partial DUF417 domain-containing protein diagnosed a non-b serotype, non-typeable H.influenzae belonging to lineage H. influenzae 22.1-21. The Oxford Nanopore metagenomic next-generation sequencing approach could be considered for the point-of-care diagnosis of infectious meningitis, by direct identification of pathogenic genomes and their genotypes/serotypes.


2020 ◽  
Vol 6 (1) ◽  
pp. eaax6208 ◽  
Author(s):  
Su-Ling Zeng ◽  
Shang-Zhen Li ◽  
Ping-Ting Xiao ◽  
Yuan-Yuan Cai ◽  
Chu Chu ◽  
...  

Metabolic syndrome (MetS) is intricately linked to dysregulation of gut microbiota and host metabolomes. Here, we first find that a purified citrus polymethoxyflavone-rich extract (PMFE) potently ameliorates high-fat diet (HFD)–induced MetS, alleviates gut dysbiosis, and regulates branched-chain amino acid (BCAA) metabolism using 16S rDNA amplicon sequencing and metabolomic profiling. The metabolic protective effects of PMFE are gut microbiota dependent, as demonstrated by antibiotic treatment and fecal microbiome transplantation (FMT). The modulation of gut microbiota altered BCAA levels in the host serum and feces, which were significantly associated with metabolic features and actively responsive to therapeutic interventions with PMFE. Notably, PMFE greatly enriched the commensal bacterium Bacteroides ovatus, and gavage with B. ovatus reduced BCAA concentrations and alleviated MetS in HFD mice. PMFE may be used as a prebiotic agent to attenuate MetS, and target-specific microbial species may have unique therapeutic promise for metabolic diseases.


2020 ◽  
Author(s):  
Kimothy L Smith ◽  
Howard A Shuman ◽  
Douglas Findeisen

AbstractWe conducted two studies of water samples from buildings with normal occupancy and water usage compared to water from buildings that were unoccupied with little or no water usage due to the COVID-19 shutdown. Study 1 had 52 water samples obtained ad hoc from buildings in four metropolitan locations in different states in the US and a range of building types. Study 2 had 36 water samples obtained from two buildings in one metropolitan location with matched water sample types. One of the buildings had been continuously occupied, and the other substantially vacant for approximately 3 months. All water samples were analyzed using 16S rRNA amplicon sequencing with a MinION from Oxford Nanopore Technologies. More than 127 genera of bacteria were identified, including genera with members that are known to include more than 50 putative frank and opportunistic pathogens. While specific results varied among sample locations, 16S rRNA amplicon abundance and the diversity of bacteria were higher in water samples from unoccupied buildings than normally occupied buildings as was the abundance of sequenced amplicons of genera known to include pathogenic bacterial members. In both studies Legionella amplicon abundance was relatively small compared to the abundance of the other bacteria in the samples. Indeed, when present, the relative abundance of Legionella amplicons was lower in samples from unoccupied buildings. Legionella did not predominate in any of the water samples and were found, on average, in 9.6% of samples in Study 1 and 8.3% of samples in Study 2.SynopsisComparison of microbial community composition in the plumbing of occupied and unoccupied buildings during the COVID-19 pandemic shutdown.


2020 ◽  
Author(s):  
Katherine M. Eaton ◽  
Moisés A. Bernal ◽  
Nathan J.C. Backenstose ◽  
Trevor J. Krabbenhoft

AbstractLocal adaptation can drive diversification of closely related species across environmental gradients and promote convergence of distantly related taxa that experience similar conditions. We examined a potential case of adaptation to novel visual environments in a species flock (Great Lakes salmonids, genus Coregonus) using a new amplicon genotyping protocol on the Oxford Nanopore Flongle. Five visual opsin genes were amplified for individuals of C. artedi, C. hoyi, C. kiyi, and C. zenithicus. Comparisons revealed species-specific differences in the coding sequence of rhodopsin (Tyr261Phe substitution), suggesting local adaptation by C. kiyi to the blue-shifted depths of Lake Superior. Parallel evolution and “toggling” at this amino acid residue has occurred several times across the fish tree of life, resulting in identical changes to the visual systems of distantly related taxa across replicated environmental gradients. Our results suggest that ecological differences and local adaptation to distinct visual environments are strong drivers of both evolutionary parallelism and diversification.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alicia F. Klompmaker ◽  
Maria Brydensholt ◽  
Anne Marie Michelsen ◽  
Matthew J. Denwood ◽  
Carsten T. Kirkeby ◽  
...  

Bovine respiratory disease (BRD) results from interactions between pathogens, environmental stressors, and host factors. Obtaining a diagnosis of the causal pathogens is challenging but the use of high-throughput real-time PCR (rtPCR) may help target preventive and therapeutic interventions. The aim of this study was to improve the interpretation of rtPCR results by analysing their associations with clinical observations. The objective was to develop and illustrate a field-data driven statistical method to guide the selection of relevant quantification cycle cut-off values for pathogens associated with BRD for the high-throughput rtPCR system “Fluidigm BioMark HD” based on nasal swabs from calves. We used data from 36 herds enrolled in a Danish field study where 340 calves within pre-determined age-groups were subject to clinical examination and nasal swabs up to four times. The samples were analysed with the rtPCR system. Each of the 1,025 observation units were classified as sick with BRD or healthy, based on clinical scores. The optimal rtPCR results to predict BRD were investigated for Pasteurella multocida, Mycoplasma bovis, Histophilus somni, Mannheimia haemolytica, and Trueperella pyogenes by interpreting scatterplots and results of mixed effects logistic regression models. The clinically relevant rtPCR cut-off suggested for P. multocida and M. bovis was ≤ 21.3. For H. somni it was ≤ 17.4, while no cut-off could be determined for M. haemolytica and T. pyogenes. The demonstrated approach can provide objective support in the choice of clinically relevant cut-offs. However, for robust performance of the regression model sufficient amounts of suitable data are required.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 257-258
Author(s):  
Hanna Ostrovski ◽  
Rodrigo Pelicioni Savegnago ◽  
Wen Huang ◽  
Cedric Gondro

Abstract Most quantitative geneticists are traditionally trained for data analysis in genetic evaluation and genomic prediction, but rarely have extensive knowledge of molecular genetics or experience in experimental labs. Recent products, such as those launched by Oxford Nanopore Technologies (ONT), give those quantitative geneticists a comprehensible and hands-on toolkit to explore DNA sequencing. The ‘MinION’, a small DNA sequencer, is of interest for quantitative geneticists due to both the minimal learning curve and the non-proprietary USB connectivity. This device is small enough to be portable, allowing for potential real-time, on-farm sequencing. The objective of this project is to compare the whole genome sequence (WGS) output of the MinION sequencer to that of the Illumina HiSeq 4000. Blood was collected from a 6-month-old Akaushi calf born on a Michigan State University farm. DNA was extracted from the sample using the QIAamp DNA Blood Kit from Qiagen, and library DNA ligation preparation (SQK-LSK109) from ONT was used. After base-calling with guppy software (provided by ONT), the data were preprocessed and experimental runs with the MinION were compared using quality control. Finally, the data were aligned with guppy software, and was compared to the aligned WGS obtained with Illumina HiSeq. Quality results from each MinION indicate that, despite the low amount of sequence collected in each run (~225,303 reads per run), the quality of bases sequenced was high (Q≥7). The aligned data from the Illumina sequencer provided 40x coverage of the genome, with a total of 739,339,742 reads. Although the amount of data obtained with MinION is much smaller than that of Illumina HiSeq, the high quality of MinION’s data combined with its ease of use give an opportunity of genomic sequencing for users who are either inexperienced or do not have access to large genomic sequencing devices.


Sign in / Sign up

Export Citation Format

Share Document