scholarly journals Expansin-controlled cell wall stiffness regulates root growth in Arabidopsis

2020 ◽  
Author(s):  
Marketa Samalova ◽  
Kareem Elsayad ◽  
Alesia Melnikava ◽  
Alexis Peaucelle ◽  
Evelina Gahurova ◽  
...  

ABSTRACTExpansins facilitate cell expansion via mediating pH-dependent cell wall (CW) loosening. However, the role of expansins in the control of biomechanical CW properties in the tissue and organ context remains elusive. We determined hormonal responsiveness and specificity of expression and localization of expansins predicted to be direct targets of cytokinin signalling. We found EXPA1 homogenously distributed throughout the CW of columella/ lateral root cap, while EXPA10 and EXPA14 localized predominantly at the three-cell boundaries of epidermis/cortex in various root zones. Cell type-specific localization of EXPA15 overlaps with higher CW stiffness measured via Brillouin light scattering microscopy. As indicated by both Brillouin frequency shift and AFM-measured Young’s modulus, EXPA1 overexpression upregulated CW stiffness, associated with shortening of the root apical meristem and root growth arrest. We propose that root growth in Arabidopsis requires delicate orchestration of biomechanical CW properties via tight regulation of various expansins’ localization to specific cell types and extracellular domains.

Author(s):  
Hee-Dae Kim ◽  
Jing Wei ◽  
Tanessa Call ◽  
Nicole Teru Quintus ◽  
Alexander J. Summers ◽  
...  

AbstractDepression is the leading cause of disability and produces enormous health and economic burdens. Current treatment approaches for depression are largely ineffective and leave more than 50% of patients symptomatic, mainly because of non-selective and broad action of antidepressants. Thus, there is an urgent need to design and develop novel therapeutics to treat depression. Given the heterogeneity and complexity of the brain, identification of molecular mechanisms within specific cell-types responsible for producing depression-like behaviors will advance development of therapies. In the reward circuitry, the nucleus accumbens (NAc) is a key brain region of depression pathophysiology, possibly based on differential activity of D1- or D2- medium spiny neurons (MSNs). Here we report a circuit- and cell-type specific molecular target for depression, Shisa6, recently defined as an AMPAR component, which is increased only in D1-MSNs in the NAc of susceptible mice. Using the Ribotag approach, we dissected the transcriptional profile of D1- and D2-MSNs by RNA sequencing following a mouse model of depression, chronic social defeat stress (CSDS). Bioinformatic analyses identified cell-type specific genes that may contribute to the pathogenesis of depression, including Shisa6. We found selective optogenetic activation of the ventral tegmental area (VTA) to NAc circuit increases Shisa6 expression in D1-MSNs. Shisa6 is specifically located in excitatory synapses of D1-MSNs and increases excitability of neurons, which promotes anxiety- and depression-like behaviors in mice. Cell-type and circuit-specific action of Shisa6, which directly modulates excitatory synapses that convey aversive information, identifies the protein as a potential rapid-antidepressant target for aberrant circuit function in depression.


2004 ◽  
Vol 18 (8) ◽  
pp. 2035-2048 ◽  
Author(s):  
Bukhtiar H. Shah ◽  
Akin Yesilkaya ◽  
J. Alberto Olivares-Reyes ◽  
Hung-Dar Chen ◽  
László Hunyady ◽  
...  

2018 ◽  
Vol 116 (1) ◽  
pp. 303-312 ◽  
Author(s):  
Erol C. Bayraktar ◽  
Lou Baudrier ◽  
Ceren Özerdem ◽  
Caroline A. Lewis ◽  
Sze Ham Chan ◽  
...  

Mitochondria are metabolic organelles that are essential for mammalian life, but the dynamics of mitochondrial metabolism within mammalian tissues in vivo remains incompletely understood. While whole-tissue metabolite profiling has been useful for studying metabolism in vivo, such an approach lacks resolution at the cellular and subcellular level. In vivo methods for interrogating organellar metabolites in specific cell types within mammalian tissues have been limited. To address this, we built on prior work in which we exploited a mitochondrially localized 3XHA epitope tag (MITO-Tag) for the fast isolation of mitochondria from cultured cells to generate MITO-Tag Mice. Affording spatiotemporal control over MITO-Tag expression, these transgenic animals enable the rapid, cell-type-specific immunoisolation of mitochondria from tissues, which we verified using a combination of proteomic and metabolomic approaches. Using MITO-Tag Mice and targeted and untargeted metabolite profiling, we identified changes during fasted and refed conditions in a diverse array of mitochondrial metabolites in hepatocytes and found metabolites that behaved differently at the mitochondrial versus whole-tissue level. MITO-Tag Mice should have utility for studying mitochondrial physiology, and our strategy should be generally applicable for studying other mammalian organelles in specific cell types in vivo.


2018 ◽  
Author(s):  
Erol Can Bayraktar ◽  
Lou Baudrier ◽  
Ceren Özerdem ◽  
Caroline A. Lewis ◽  
Sze Ham Chan ◽  
...  

ABSTRACTMitochondria are metabolic organelles that are essential for mammalian life, but the dynamics of mitochondrial metabolism within mammalian tissues in vivo remains incompletely understood. While whole-tissue metabolite profiling has been useful for studying metabolism in vivo, such an approach lacks resolution at the cellular and subcellular level. In vivo methods for interrogating organellar metabolites in specific cell-types within mammalian tissues have been limited. To address this, we built on prior work in which we exploited a mitochondrially-localized 3XHA epitope-tag (“MITO-Tag”) for the fast isolation of mitochondria from cultured cells to now generate “MITO-Tag Mice.” Affording spatiotemporal control over MITO-Tag expression, these transgenic animals enable the rapid, cell-type-specific immunoisolation of mitochondria from tissues, which we verified using a combination of proteomic and metabolomic approaches. Using MITO-Tag Mice and targeted and untargeted metabolite profiling, we identified changes during fasted and refed conditions in a diverse array of mitochondrial metabolites in hepatocytes and found metabolites that behaved differently at the mitochondrial versus whole-tissue level. MITO-Tag Mice should have utility for studying mitochondrial physiology and our strategy should be generally applicable for studying other mammalian organelles in specific cell-types in vivo.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jiakang Jin ◽  
Jinti Lin ◽  
Ankai Xu ◽  
Jianan Lou ◽  
Chao Qian ◽  
...  

Tumor microenvironment (TME) formation is a major cause of immunosuppression. The TME consists of a considerable number of macrophages and stromal cells that have been identified in multiple tumor types. CCL2 is the strongest chemoattractant involved in macrophage recruitment and a powerful initiator of inflammation. Evidence indicates that CCL2 can attract other host cells in the TME and direct their differentiation in cooperation with other cytokines. Overall, CCL2 has an unfavorable effect on prognosis in tumor patients because of the accumulation of immunosuppressive cell subtypes. However, there is also evidence demonstrating that CCL2 enhances the anti-tumor capability of specific cell types such as inflammatory monocytes and neutrophils. The inflammation state of the tumor seems to have a bi-lateral role in tumor progression. Here, we review works focusing on the interactions between cancer cells and host cells, and on the biological role of CCL2 in these processes.


Author(s):  
Samina Momtaz ◽  
Belen Molina ◽  
Luwanika Mlera ◽  
Felicia Goodrum ◽  
Jean M. Wilson

AbstractHuman cytomegalovirus (HCMV), while highly restricted for the human species, infects an unlimited array of cell types in the host. Patterns of infection are dictated by the cell type infected, but cell type-specific factors and how they impact tropism for specific cell types is poorly understood. Previous studies in primary endothelial cells showed that HCMV infection induces large multivesicular-like bodies that incorporate viral products including dense bodies and virions. Here we define the nature of these large vesicles using a recombinant virus where UL32, encoding the pp150 tegument protein, is fused in frame with green fluorescent protein (GFP, TB40/E-UL32-GFP). Cells were fixed and labeled with antibodies against subcellular compartment markers and imaged using confocal and super-resolution microscopy. In fibroblasts, UL32-GFP-positive vesicles were marked with classical markers of MVBs, including CD63 and lysobisphosphatidic acid (LBPA), both classical MVB markers, as well as the clathrin and LAMP1. Unexpectedly, UL32-GFP-positive vesicles in endothelial cells were not labeled by CD63, and LBPA was completely lost from infected cells. We defined these UL32-positive vesicles in endothelial cells using markers for the cis-Golgi (GM130), lysosome (LAMP1), and autophagy (LC3B). These findings suggest that virus-containing MVBs in fibroblasts are derived from the canonical endocytic pathway and takeover classical exosomal release pathway. Virus containing MVBs in HMVECs are derived from the early biosynthetic pathway and exploit a less characterized early Golgi-LAMP1-associated non-canonical secretory autophagy pathway. These results reveal striking cell-type specific membrane trafficking differences in host pathways that are exploited by HCMV.ImportanceHuman cytomegalovirus (HCMV) is a herpesvirus that, like all herpesvirus, that establishes a life long infection. HCMV remains a significant cause of morbidity and mortality in the immunocompromised and HCMV seropositivity is associated with increased risk vascular disease. HCMV infects many cells in the human and the biology underlying the different patterns of infection in different cell types is poorly understood. Endothelial cells are important target of infection that contribute to hematogenous spread of the virus to tissues. Here we define striking differences in the biogenesis of large vesicles that incorporate virions in fibroblasts and endothelial cells. In fibroblasts, HCMV is incorporated into canonical MVBs derived from an endocytic pathway, whereas HCMV matures through vesicles derived from the biosynthetic pathway in endothelial cells. This work defines basic biological differences between these cell types that may impact the outcome of infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Megan E. Barefoot ◽  
Netanel Loyfer ◽  
Amber J. Kiliti ◽  
A. Patrick McDeed ◽  
Tommy Kaplan ◽  
...  

Detection of cellular changes in tissue biopsies has been the basis for cancer diagnostics. However, tissue biopsies are invasive and limited by inaccuracies due to sampling locations, restricted sampling frequency, and poor representation of tissue heterogeneity. Liquid biopsies are emerging as a complementary approach to traditional tissue biopsies to detect dynamic changes in specific cell populations. Cell-free DNA (cfDNA) fragments released into the circulation from dying cells can be traced back to the tissues and cell types they originated from using DNA methylation, an epigenetic regulatory mechanism that is highly cell-type specific. Decoding changes in the cellular origins of cfDNA over time can reveal altered host tissue homeostasis due to local cancer invasion and metastatic spread to distant organs as well as treatment responses. In addition to host-derived cfDNA, changes in cancer cells can be detected from cell-free, circulating tumor DNA (ctDNA) by monitoring DNA mutations carried by cancer cells. Here, we will discuss computational approaches to identify and validate robust biomarkers of changed tissue homeostasis using cell-free, methylated DNA in the circulation. We highlight studies performing genome-wide profiling of cfDNA methylation and those that combine genetic and epigenetic markers to further identify cell-type specific signatures. Finally, we discuss opportunities and current limitations of these approaches for implementation in clinical oncology.


2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e19013-e19013
Author(s):  
Marianne T. Santaguida ◽  
Ryosuke Kita ◽  
Steven A. Schaffert ◽  
Erica K. Anderson ◽  
Kamran A Ali ◽  
...  

e19013 Background: Understanding the heterogeneity of AML is necessary for developing targeted drugs and diagnostics. A key measure of heterogeneity is the variance in response to treatments. Previously, we developed an ex vivo flow cytometry drug sensitivity assay (DSA) that predicted response to treatments in myelodysplastic syndrome. Unlike bulk cell viability measures of other drug sensitivity assays, our flow cytometry assay provides single cell resolution. The assay measures a drug’s effect on the viability or functional state of specific cell types. Here we present the development of this technology for AML, with additional measurements of DNA-Seq and RNA-Seq. Using the data from this assay, we aim to characterize the heterogeneity in AML drug sensitivity and the molecular mechanisms that drive it. Methods: As an initial feasibility analysis, we assayed 1 bone marrow and 3 peripheral blood AML patient samples. For the DSA, the samples were cultured with six AML standard of care (SOC) compounds across seven doses, in addition to two combinations. The cells were stained to detect multiple cell types including tumor blasts, and drug response was measured by flow cytometry. For the multi-omics, the cells were magnetically sorted to enrich for blasts and then assayed using a targeted 400 gene DNA-Seq panel and whole bulk transcriptome RNA-Seq. For comparison with BeatAML, Pearson correlations between gene expression and venetoclax sensitivity were investigated. Results: In our drug sensitivity assay, we measured dose response curves for the six SOC compounds, for each different cell type across each sample. The dose responses had cell type specific effects, including differences in drug response between CD11b+ blasts, CD11b- blasts, and other non-blast populations. Integrating with the DNA-Seq and RNA-Seq data, known associations between ex vivo drug response and gene expression were identified with additional cell type specificity. For example, BCL2A1 expression was negatively correlated with venetoclax sensitivity in CD11b- blasts but not in CD11b+ blasts. To further corroborate, among the top 1000 genes associated with venetoclax sensitivity in BeatAML, 93.7% had concordant directionality in effect. Conclusions: Here we describe the development of an integrated ex vivo drug sensitivity assay and multi-omics dataset. The data demonstrated that ex vivo responses to compounds differ between cell types, highlighting the importance of measuring drug response in specific cell types. In addition, we demonstrated that integrating these data will provide unique insights on molecular mechanisms that affect cell type specific drug response. As we continue to expand the number of patient samples evaluated with our multi-dimensional platform, this dataset will provide insights for novel drug target discovery, biomarker development, and, in the future, informing treatment decisions.


2020 ◽  
Vol 32 (8) ◽  
pp. 499-507
Author(s):  
Ryota Sato ◽  
Chieko Makino-Okamura ◽  
Quingshun Lin ◽  
Muying Wang ◽  
Jason E Shoemaker ◽  
...  

Abstract Aluminum precipitates have long been used as adjuvants for human vaccines, but there is a clear need for safer and more effective adjuvants. Here we report in a mouse model that the psoriasis drug Oxarol ointment is a highly effective vaccine adjuvant. By applying Oxarol ointment onto skin, humoral responses and germinal center (GC) reactions were augmented, and the treated mice were protected from death caused by influenza virus infection. Keratinocyte-specific vitamin D3 receptor (Vdr) gene expression was required for these responses through induction of the thymic stromal lymphopoietin (Tslp) gene. Experiments involving administration of recombinant TSLP or, conversely, anti-TSLP antibody demonstrated that TSLP plays a key role in the GC reactions. Furthermore, cell-type-specific Tslpr gene deletion or diphtheria toxin-mediated deletion of specific cell types revealed that CD11c+ cells excluding Langerhans cells were responsible for the Oxarol-mediated GC reactions. These results indicate that active vitamin D3 is able to enhance the humoral response via Tslp induction in the skin and serves as a new vaccine adjuvant.


Sign in / Sign up

Export Citation Format

Share Document