Multi-omics analysis of aspirin treatment response in mice provide molecular insights and targets linked to liver fibrosis regression

2020 ◽  
Author(s):  
Adil Bhat ◽  
Sudrishti Chaudhary ◽  
Gaurav Yadav ◽  
Anupama prasar ◽  
Chhagan Bihari ◽  
...  

AbstractBackground & AimsAspirin has potent anti-platelet activities and possibly helps regression of fibrosis. We investigated antifibrotic mechanisms of aspirin in the murine CCl4 model and in patients with hepatic fibrosis.MethodsMultiomics analysis identified networks and molecular targets regulated by aspirin which were validated in murine model and in patients with liver fibrosis.ResultsBiochemical/histopathological changes and hepatic fibrosis were greater in CCl4-treated mice compared to CCl4-aspirin (CCl4+ASA) or control mice (p<0.05). In CCl4+ASA mice, integrated proteome-metabolome analysis showed an increase in autophagy, drug metabolism, glutathione and energy metabolism (p<0.05) and decrease in inflammatory pathways, arachidonic acid and butanoate metabolism (p<0.05). Global cross-correlation analysis linked fibrosis markers with protein-metabolite pathways (r2>0.5, p<0.05). Liver proteome enrichment for immune clusters using blood transcription module correlated with histidine and tryptophan metabolism (r2>0.5, p<0.05). Aspirin decreased Ryanodine-receptor-2 (RYR2;oxidative-stress), Arginase-1 (ARG-1;urea cycle), Arachidonate-5-lipoxygenase (ALOX5;leukotriene metabolism), and Kynurenine-3-monooxygenase (KMO;tryptophan metabolism; p<0.05) which correlated with reduction in α-SMA, PDGFR-β and degree of hepatic fibrosis (r2>0.75; p<0.05) in animal and human studies, and, in-vitro analysis. Aspirin modulated intracellular-calcium and oxidative-stress levels by reducing RYR2 expression in activated LX-2 cells. It modulated the liver microbiome and its functions which also correlated with ARG1, ALOX5, RYR2 expression (r2>0.5, p<0.05). Metaproteome analysis showed significant microbiome similarity at phylum level in murine liver tissues and fecal samples. Aspirin increased the abundance of Firmicutes (Ruminococcaceae, Lachnospiraceae, and Clostridiaceae) and their functionality, as assessed by glycerol-3-phosphate dehydrogenase (NAD(P)(+) and dTMP-kinase activity (p<0.05).ConclusionsAspirin demonstrates broad beneficial effects following oxidative injury, inflammation, and hepatic fibrosis. Aspirin induces distinctive hepatic proteome/metabolome and intrahepatic microbiome changes which are indicative of fibrosis regression and could be further explored as therapeutic targets.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hafiz Muhammad Umer Farooqi ◽  
Bohye Kang ◽  
Muhammad Asad Ullah Khalid ◽  
Abdul Rahim Chethikkattuveli Salih ◽  
Kinam Hyun ◽  
...  

AbstractHepatic fibrosis is a foreshadowing of future adverse events like liver cirrhosis, liver failure, and cancer. Hepatic stellate cell activation is the main event of liver fibrosis, which results in excessive extracellular matrix deposition and hepatic parenchyma's disintegration. Several biochemical and molecular assays have been introduced for in vitro study of the hepatic fibrosis progression. However, they do not forecast real-time events happening to the in vitro models. Trans-epithelial electrical resistance (TEER) is used in cell culture science to measure cell monolayer barrier integrity. Herein, we explored TEER measurement's utility for monitoring fibrosis development in a dynamic cell culture microphysiological system. Immortal HepG2 cells and fibroblasts were co-cultured, and transforming growth factor β1 (TGF-β1) was used as a fibrosis stimulus to create a liver fibrosis-on-chip model. A glass chip-based embedded TEER and reactive oxygen species (ROS) sensors were employed to gauge the effect of TGF-β1 within the microphysiological system, which promotes a positive feedback response in fibrosis development. Furthermore, albumin, Urea, CYP450 measurements, and immunofluorescent microscopy were performed to correlate the following data with embedded sensors responses. We found that chip embedded electrochemical sensors could be used as a potential substitute for conventional end-point assays for studying fibrosis in microphysiological systems.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Jing-Hua Wang ◽  
Sung-Bae Lee ◽  
Dong-Soo Lee ◽  
Chang-Gue Son

Oxidative stress plays a pivotal role in the progression of chronic hepatitis B; however, it is unclear whether the status of blood oxidative stress and antioxidant components differs depending on the degree of hepatic fibrosis. To explore the relationship between oxidative stress/antioxidant capacity and the extent of hepatic fibrosis, fifty-four subjects with liver fibrosis (5.5 ≤ liver stiffness measurement (LSM) score ≤ 16.0 kPa) by chronic hepatitis B virus (HBV) were analyzed. From the analysis of eight kinds of serum oxidative stress/antioxidant profiles and liver fibrosis degrees, the level of total antioxidant capacity (TAC) reflected a negative correlation with the severity of hepatic fibrosis (Pearson correlation, r = −0.35, p = 0.01). Moreover, TAC showed higher sensitivity (73.91%) than the aspartate transaminase (AST) to platelet ratio index (APRI, 56.52%) in the receiver operating characteristic (ROC) curves. Interestingly, the TAC level finely reflected the fibrosis degree in inactive carriers (HBV DNA < 2000 IU/mL), while the APRI did in active carriers (HBV DNA > 2000 IU/mL). In conclusion, TAC is a promising biomarker for evaluating the progression of liver fibrosis in patients with HBV, and this finding may indicate the involvement of TAC-composing factors in the pathogenesis of hepatic fibrosis in chronic HBV carriers.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


2018 ◽  
Vol 51 (5) ◽  
pp. 2111-2122 ◽  
Author(s):  
Yi-Bing Hu ◽  
Xiao-Ting Ye ◽  
Qing-Qing Zhou ◽  
Rong-Quan Fu

Background/Aims: Sestrin 2 is associated with the pathophysiology of several diseases. The aim of this study was to investigate the effects and potential mechanisms of Sestrin 2 in rat hepatic stellate cells (HSCs) during liver fibrogenesis. Methods: In this study, Sestrin 2 protein expression was detected in rat HSC-T6 cells challenged with transforming growth factor-β (TGF-β) and in mice treated with carbon tetrachloride (CCl4), a well-known model of hepatic fibrosis. Next, HSC-T6 cells and fibrotic mice were transfected with lentivirus. The mRNA expression levels of markers of liver fibrosis [alpha-smooth muscle actin (α-SMA) and collagen 1A1 (Col1A1)] were analyzed by quantitative reverse transcription–polymerase chain reaction (RT-PCR). Cell death and proliferation were evaluated by the MTT assay, and biochemical markers of liver damage in serum [alanine transaminase (ALT) and aspartate transaminase (AST)] were also measured using a biochemical analyzer. Histopathological examination was used to evaluate the degree of liver fibrosis, and protein expression [phospho-adenosine monophosphate-activated protein kinase (p-AMPK), AMPK, phospho-mammalian target of rapamycin (p-mTOR), and mTOR] was determined by western blotting. Results: We found that Sestrin 2 was elevated in both the HSC-T6 cell and hepatic fibrosis models. In vitro, overexpression of Sestrin 2 attenuated the mRNA levels of α-SMA and Col1A1, suppressed α-SMA protein expression, and modulated HSC-T6 cell proliferation. In vivo, overexpression of Sestrin 2 reduced the ALT and AST levels as well as the α-SMA and Col1A1 protein expression in the CCl4 model of liver fibrosis. Moreover, the degree of liver fibrosis was ameliorated. Interestingly, overexpression of Sestrin 2 increased p-AMPK but decreased p-mTOR protein expression. Conclusion: Our findings indicate that Sestrin 2 may attenuate the activation of HSCs and ameliorate liver fibrosis, most likely via upregulation of AMPK phosphorylation and suppression of the mTOR signaling pathway.


2018 ◽  
Vol 17 (4) ◽  
pp. 1235-1246 ◽  
Author(s):  
Abdelnaser A. Badawy ◽  
Mohammed A. El-Magd ◽  
Sana A. AlSadrah

Background/Objectives: In the Middle East, people consume camel milk regularly as it is believed to improve immunity against diseases and decrease the risk for cancer. Recently, it was noted that most of the beneficial effects of milk come from their nanoparticles, especially exosomes. Herein, we evaluated the anticancer potential of camel milk and its exosomes on MCF7 breast cancer cells (in vitro and in vivo) and investigated the possible underlying molecular mechanism of action. Methods/Results: Administration of camel milk (orally) and its exosomes (orally and by local injection) decreased breast tumor progression as evident by ( a) higher apoptosis (indicated by higher DNA fragmentation, caspase-3 activity, Bax gene expression, and lower Bcl2 gene expression), ( b) remarkable inhibition of oxidative stress (decrease in MDA levels and iNOS gene expression); ( c) induction of antioxidant status (increased activities of SOD, CAT, and GPX), ( d) notable reduction in expression of inflammation-( IL1b, NFκB), angiogenesis-( VEGF) and metastasis-( MMP9, ICAM1) related genes; and ( e) higher immune response (high number of CD+4, CD+8, NK1.1 T cells in spleen). Conclusions: Overall, administration of camel milk–derived exosomes showed better anticancer effect, but less immune response, than treatment by camel milk. Moreover, local injection of exosomes led to better improvement than oral administration. These findings suggest that camel milk and its exosomes have anticancer effect possibly through induction of apoptosis and inhibition of oxidative stress, inflammation, angiogenesis and metastasis in the tumor microenvironment. Thus, camel milk and its exosomes could be used as an anticancer agent for cancer treatment.


Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1106
Author(s):  
Natasha Rios Leite ◽  
Laura Costa Alves de Araújo ◽  
Paola dos Santos da Rocha ◽  
Danielle Araujo Agarrayua ◽  
Daiana Silva Ávila ◽  
...  

Fruits are sources of bioactive compounds that are responsible for several biological activities. Therefore, this study aimed to identify the chemical composition of the pulp of the Brazilian Savanna fruit Dipteryx alata; evaluate its toxic effects, influence on the life expectancy of the nematode Caenorhabditis elegans, and its antioxidant activities in vitro and in vivo; and describe the mechanisms involved. The chemical compounds identified include phenols, terpenes, fatty acid derivatives, vitamins, and a carboxylic acid. The in vitro antioxidant activity was demonstrated by radical scavenging methods. in vivo, the D. alata fruit pulp was not toxic and promoted resistance to oxidative stress in nematodes exposed to a chemical oxidizing agent. Furthermore, it promoted an increased life expectancy in wild-type nematodes and increased the expression of superoxide dismutase and the nuclear translocation of DAF-16. These results suggest that the beneficial effects identified are related to these two genes, which are involved in the regulation of metabolic activities, the control of oxidative stress, and the lifespan of C. elegans. These beneficial effects, which may be related to its chemical constituents, demonstrate its potential use as a functional and/or nutraceutical food.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Longlong Li ◽  
Yao Yao ◽  
Zhihao Jiang ◽  
Jinlong Zhao ◽  
Ji Cao ◽  
...  

Dehydroepiandrosterone (DHEA) is a popular dietary supplement that has well-known benefits in animals and humans, but there is not enough information about the mechanisms underlying its effects. The present study aimed at investigating these mechanisms through in vitro experiments on the effects of DHEA on rat liver BRL-3A cells exposed to oxidative stress through H2O2. The findings showed that DHEA increased the antioxidant enzyme activity, decreased ROS generation, and inhibited apoptosis in H2O2-treated cells. These effects of DHEA were not observed when the cells were pretreated with known antagonists of sex hormones (Trilostane, Flutamide, or Fulvestrant). Furthermore, treatment with estradiol and testosterone did not have the same protective effects as DHEA. Thus, the beneficial effects of DHEA were associated with mechanisms that were independent of steroid hormone pathways. With regard to the mechanism underlying the antiapoptotic effect of DHEA, pretreatment with DHEA was found to induce a significant decrease in the protein expression of Bax and caspase-3 and a significant increase in the protein expression of PI3K and p-Akt in H2O2-treated BRL-3A cells. These effects of DHEA were abolished when the cells were pretreated with the PI3K inhibitor LY294002. No changes were observed on the p-ERK1/2, p-p38, and p-JNK protein levels in H2O2-induced BRL-3A cells pretreated with DHEA. In conclusion, our data demonstrate that DHEA protects BRL-3A cells against H2O2-induced oxidative stress and apoptosis through mechanisms that do not involve its biotransformation into steroid hormones or the activation of sex hormone receptors. Importantly, the protective effect of DHEA on BRL-3A cells was mainly associated with PI3K/Akt signaling pathways, rather than MAPK signaling pathways.


Planta Medica ◽  
2018 ◽  
Vol 84 (18) ◽  
pp. 1318-1333 ◽  
Author(s):  
Ligen Lin ◽  
Fayang Zhou ◽  
Shengnan Shen ◽  
Tian Zhang

AbstractLiver fibrosis is a wound-healing response characterized by the accumulation of extracellular matrix following various liver injuries, which results in the deformation of the normal liver architecture and the development of liver cirrhosis and even hepatocellular carcinoma. Numerous in vitro and in vivo studies indicated that oxidative stress mediates the initiation and progression of liver fibrosis. Overaccumulation of reactive oxygen species disrupts macromolecules, induces necrosis and apoptosis of hepatocytes, stimulates the production of pro-fibrogenic mediators, and directly activates hepatic stellate cells, thereby resulting in liver damage and initiating liver fibrosis. Ameliorating oxidative stress is a potential therapeutic strategy for the treatment of liver fibrosis. Natural antioxidants have attracted increasing attention in treating liver fibrosis due to their safety and efficacy. In this review, the pathogenesis of liver fibrosis and the role of oxidative stress in liver fibrosis were discussed. Naturally occurring antioxidants that can treat and prevent liver fibrosis were summarized. Advances in clinical trials were also presented. The main purpose of this review is to provide a comprehensive and up-to-date knowledge from the biological importance of oxidative stress in liver fibrosis to representative antioxidants for treating liver fibrosis. Naturally occurring antioxidants show a potential for further investigations as lead compounds in fighting liver fibrosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ting Zhai ◽  
Wei Xu ◽  
Yayun Liu ◽  
Kun Qian ◽  
Yanling Xiong ◽  
...  

Background. Honokiol (HNK) has been reported to possess various beneficial effects in the context of metabolic disorders, including fatty liver, insulin resistance, and oxidative stress which are closely related to nonalcoholic steatohepatitis (NASH), however with no particular reference to CFLAR or JNK. Methods. C57BL/6 mice were fed methionine-choline-deficient (MCD) diet and administered simultaneously with HNK (10 and 20 mg/kg once a day, ig) for 6 weeks, and NCTC1469 cells were pretreated, respectively, by oleic acid (OA, 0.5 mmol/L) plus palmitic acid (PA, 0.25 mmol/L) for 24 h, and adenovirus-down Cflar for 24 h, then exposed to HNK (10 and 20 μmol/L) for 24 h. Commercial kits, H&E, MT, ORO staining, RT-qPCR, and Western blotting were used to detect the biomarkers, hepatic histological changes, and the expression of key genes involved in NASH. Results. The in vivo results showed that HNK suppressed the phosphorylation of JNK (pJNK) by activating CFLAR; enhanced the mRNA expression of lipid metabolism-related genes Acox, Cpt1α, Fabp5, Gpat, Mttp, Pparα, and Scd-1; and decreased the levels of hepatic TG, TC, and MDA, as well as the levels of serum ALT and AST. Additionally, HNK enhanced the protein expression of oxidative stress-related key regulatory gene NRF2 and the activities of antioxidases HO-1, CAT, and GSH-Px and decreased the protein levels of prooxidases CYP4A and CYP2E1. The in vivo effects of HNK on the expression of CLFAR, pJNK, and NRF2 were proved by the in vitro experiments. Moreover, HNK promoted the phosphorylation of IRS1 (pIRS1) in both tested cells and increased the uptake of fluorescent glucose 2-NBDG in OA- and PA-pretreated cells. Conclusions. HNK ameliorated NASH mainly by activating the CFLAR-JNK pathway, which not only alleviated fat deposition by promoting the efflux and β-oxidation of fatty acids in the liver but also attenuated hepatic oxidative damage and insulin resistance by upregulating the expression of NRF2 and pIRS1.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Song ◽  
Dan Liu ◽  
Liang Feng ◽  
Zhenhai Zhang ◽  
Xiaobin Jia ◽  
...  

Cisplatin (CDDP) is a potent antitumor compound widely used with a notably side effect of nephrotoxicity inducing oxidative stress and apoptosis in kidneys. Standardized extract from the leaves of theGinkgo bilobatrees, labeled EGb761 (EGb), has been available on the market for its beneficial effects. The purpose of this study was to investigate the ability of EGb to prevent the nephrotoxic effect of CDDP and the mechanisms involved. Our results showed that EGb treatment restored the levels of creatinine, BUN, MDA, NO, SOD, CAT, GPx, and GSSG/GSH ratio in kidneys after CDDP injection. EGb also exhibited a tendency to decrease the elevated NF-κB translocation and caspase-3 protein levels in CDDP-treated kidneys. We further used a porcine kidney proximal tubular epithelial (LLC-PK1) cell line, finding that EGb accordingly inhibited ROS accumulation and iNOS increase induced by CDDPin vitro. EGb also attenuated IκB degradation and p65 NF-κB phosphorylation triggered by CDDP in LLC-PK1 cells. But EGb failed to influence CDDP-stimulated caspase cascade. These findings suggested that EGb’s renoprotective effect might be mediated by not only its well-known antioxidant activity but also the anti-inflammatory activity.


Sign in / Sign up

Export Citation Format

Share Document