scholarly journals FADS2-mediated fatty acid desaturation and cholesterol esterification are signatures of metabolic reprogramming during melanoma progression

2020 ◽  
Author(s):  
Hyeon Jeong Lee ◽  
Zhicong Chen ◽  
Marianne Collard ◽  
Jiaji G Chen ◽  
Muzhou Wu ◽  
...  

AbstractIdentifying metabolic alterations in disease progression has been challenged by difficulties in tracking metabolites at sub-cellular level. Here, by high-resolution stimulated Raman scattering and pump-probe imaging and spectral phasor analysis of melanoma cells grouped by MITF/AXL expression pattern and of human patient tissues paired by primary and metastatic status, we identify a metabolic switch from a pigment-containing phenotype in low-grade melanoma to a lipid-rich phenotype in metastatic melanoma. The lipids found in MITFlow/AXLhigh melanoma cells contain high levels of cholesteryl ester (CE) and unsaturated fatty acid species. Elevated fatty acid uptake activity in MITFlow/AXLhigh melanoma contributes to the lipid-rich phenotype, and inhibiting fatty acid uptake suppresses cell migration. Importantly, monounsaturated sapienate is identified as an essential fatty acid that effectively promotes cancer migration. Blocking either FADS2-mediated lipid desaturation or SOAT-mediated cholesterol esterification effectively suppresses the migration capacity of melanoma in vitro and in vivo, indicating the therapeutic potential of targeting these metabolic pathways in metastatic melanoma. Collectively, our results reveal metabolic reprogramming during melanoma progression, and highlight metabolic signatures that could serve as targets for metastatic melanoma treatment and diagnosis.

BME Frontiers ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hyeon Jeong Lee ◽  
Zhicong Chen ◽  
Marianne Collard ◽  
Fukai Chen ◽  
Jiaji G. Chen ◽  
...  

Objective and Impact Statement. Molecular signatures are needed for early diagnosis and improved treatment of metastatic melanoma. By high-resolution multimodal chemical imaging of human melanoma samples, we identify a metabolic reprogramming from pigmentation to lipid droplet (LD) accumulation in metastatic melanoma. Introduction. Metabolic plasticity promotes cancer survival and metastasis, which promises to serve as a prognostic marker and/or therapeutic target. However, identifying metabolic alterations has been challenged by difficulties in mapping localized metabolites with high spatial resolution. Methods. We developed a multimodal stimulated Raman scattering and pump-probe imaging platform. By time-domain measurement and phasor analysis, our platform allows simultaneous mapping of lipids and pigments at a subcellular level. Furthermore, we identify the sources of these metabolic signatures by tracking deuterium metabolites at a subcellular level. By validation with mass spectrometry, a specific fatty acid desaturase pathway was identified. Results. We identified metabolic reprogramming from a pigment-containing phenotype in low-grade melanoma to an LD-rich phenotype in metastatic melanoma. The LDs contain high levels of cholesteryl ester and unsaturated fatty acids. Elevated fatty acid uptake, but not de novo lipogenesis, contributes to the LD-rich phenotype. Monounsaturated sapienate, mediated by FADS2, is identified as an essential fatty acid that promotes cancer migration. Blocking such metabolic signatures effectively suppresses the migration capacity both in vitro and in vivo. Conclusion. By multimodal spectroscopic imaging and lipidomic analysis, the current study reveals lipid accumulation, mediated by fatty acid uptake, as a metabolic signature that can be harnessed for early diagnosis and improved treatment of metastatic melanoma.


2021 ◽  
Author(s):  
Junjie Li ◽  
Yuying Tan ◽  
Guangyuan Zhao ◽  
Kai-Chih Huang ◽  
Horacio Cardenas ◽  
...  

Increased aerobic glycolysis is widely considered as a hallmark of cancer. Yet, cancer cell metabolic reprograming during development of therapeutic resistance is under-studied. Here, through high-throughput stimulated Raman scattering imaging and single cell analysis, we found that cisplatin-resistant cells exhibit increased uptake of exogenous fatty acids, accompanied with decreased glucose uptake and de novo lipogenesis, indicating a reprogramming from glucose and glycolysis dependent to fatty acid uptake and beta-oxidation dependent anabolic and energy metabolism. A metabolic index incorporating measurements of glucose derived anabolism and fatty acid uptake correlates linearly to the level of resistance to cisplatin in ovarian cancer cell lines and in primary cells isolated from ovarian cancer patients. Mechanistically, the increased fatty acid uptake facilitates cancer cell survival under cisplatin-induced oxidative stress by enhancing energy production through beta-oxidation. Consequently, blocking fatty acid beta-oxidation by a small molecule inhibitor in combination with cisplatin or carboplatin synergistically suppressed ovarian cancer proliferation in vitro and growth of patient-derived xenograft in vivo. Collectively, these findings support a new way for rapid detection of cisplatin-resistance at single cell level and a new strategy for treatment of cisplatin-resistant tumors.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3147
Author(s):  
Laurence Pellerin ◽  
Lorry Carrié ◽  
Carine Dufau ◽  
Laurence Nieto ◽  
Bruno Ségui ◽  
...  

Metabolic reprogramming contributes to the pathogenesis and heterogeneity of melanoma. It is driven both by oncogenic events and the constraints imposed by a nutrient- and oxygen-scarce microenvironment. Among the most prominent metabolic reprogramming features is an increased rate of lipid synthesis. Lipids serve as a source of energy and form the structural foundation of all membranes, but have also emerged as mediators that not only impact classical oncogenic signaling pathways, but also contribute to melanoma progression. Various alterations in fatty acid metabolism have been reported and can contribute to melanoma cell aggressiveness. Elevated expression of the key lipogenic fatty acid synthase is associated with tumor cell invasion and poor prognosis. Fatty acid uptake from the surrounding microenvironment, fatty acid β-oxidation and storage also appear to play an essential role in tumor cell migration. The aim of this review is (i) to focus on the major alterations affecting lipid storage organelles and lipid metabolism. A particular attention has been paid to glycerophospholipids, sphingolipids, sterols and eicosanoids, (ii) to discuss how these metabolic dysregulations contribute to the phenotype plasticity of melanoma cells and/or melanoma aggressiveness, and (iii) to highlight therapeutic approaches targeting lipid metabolism that could be applicable for melanoma treatment.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 335-OR
Author(s):  
NANDINI RJ ◽  
SR RAJI ◽  
VIVEK V. PILLAI ◽  
JAYAKUMAR K. ◽  
SRINIVAS GOPALA

Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 722 ◽  
Author(s):  
Zhibo Gai ◽  
Tianqi Wang ◽  
Michele Visentin ◽  
Gerd Kullak-Ublick ◽  
Xianjun Fu ◽  
...  

Obesity and hyperlipidemia are the most prevalent independent risk factors of chronic kidney disease (CKD), suggesting that lipid accumulation in the renal parenchyma is detrimental to renal function. Non-esterified fatty acids (also known as free fatty acids, FFA) are especially harmful to the kidneys. A concerted, increased FFA uptake due to high fat diets, overexpression of fatty acid uptake systems such as the CD36 scavenger receptor and the fatty acid transport proteins, and a reduced β-oxidation rate underlie the intracellular lipid accumulation in non-adipose tissues. FFAs in excess can damage podocytes, proximal tubular epithelial cells and the tubulointerstitial tissue through various mechanisms, in particular by boosting the production of reactive oxygen species (ROS) and lipid peroxidation, promoting mitochondrial damage and tissue inflammation, which result in glomerular and tubular lesions. Not all lipids are bad for the kidneys: polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) seem to help lag the progression of chronic kidney disease (CKD). Lifestyle interventions, especially dietary adjustments, and lipid-lowering drugs can contribute to improve the clinical outcome of patients with CKD.


1984 ◽  
Vol 102 (3) ◽  
pp. 381-386 ◽  
Author(s):  
R. Gross ◽  
P. Mialhe

ABSTRACT To elucidate the hypolipacidaemic effect of insulin in ducks, its action on the uptake of free fatty acids (FFA) by duck hepatocytes was determined. At low doses (10 mu./l) insulin stimulated FFA uptake. This effect was not observed with higher doses of insulin (20, 30 and 50 mu./l). Growth hormone at physiological concentrations and corticosterone (14·4 nmol/l) decreased basal activity, probably by reducing glucose metabolism and consequently α-glycerophosphate (α-GP) supply. Insulin was able to reverse the inhibition induced by GH and corticosterone on both FFA uptake and α-GP production. These results therefore suggest that the hypolipacidaemic effect of insulin may be partly mediated by its action on hepatic FFA uptake. J. Endocr. (1984) 102, 381–386


2005 ◽  
Vol 288 (3) ◽  
pp. E547-E555 ◽  
Author(s):  
Ana Paola Uranga ◽  
James Levine ◽  
Michael Jensen

Oxidation and adipose tissue uptake of dietary fat can be measured by adding fatty acid tracers to meals. These studies were conducted to measure between-study variability of these types of experiments and assess whether dietary fatty acids are handled differently in the follicular vs. luteal phase of the menstrual cycle. Healthy normal-weight men ( n = 12) and women ( n = 12) participated in these studies, which were block randomized to control for study order, isotope ([3H]triolein vs. [14C]triolein), and menstrual cycle. Energy expenditure (indirect calorimetry), meal fatty acid oxidation, and meal fatty acid uptake into upper body and lower body subcutaneous fat (biopsies) 24 h after the experimental meal were measured. A greater portion of meal fatty acids was stored in upper body subcutaneous adipose tissue (24 ± 2 vs. 16 ± 2%, P < 0.005) and lower body fat (12 ± 1 vs. 7 ± 1%, P < 0.005) in women than in men. Meal fatty acid oxidation (3H2O generation) was greater in men than in women (52 ± 3 vs. 45 ± 2%, P = 0.04). Leg adipose tissue uptake of meal fatty acids was 15 ± 2% in the follicular phase of the menstrual cycle and 10 ± 1% in the luteal phase ( P = NS). Variance in meal fatty acid uptake was somewhat ( P = NS) greater in women than in men, although menstrual cycle factors did not contribute significantly. We conclude that leg uptake of dietary fat is slightly more variable in women than in men, but that there are no major effects of menstrual cycle on meal fatty acid disposal.


Sign in / Sign up

Export Citation Format

Share Document