scholarly journals Mutanofactin promotes bacterial adhesion and biofilm formation of cariogenic Streptococcus mutans

2020 ◽  
Author(s):  
Zhong-Rui Li ◽  
Yongle Du ◽  
Jin Sun ◽  
Aifei Pan ◽  
Lin Zeng ◽  
...  

AbstractCariogenic Streptococcus mutans is known as a predominant etiological agent of dental caries due to its exceptional capacity in forming biofilms. From strains of S. mutans isolated from dental plaque, we here discover a polyketide/non-ribosomal peptide biosynthetic gene cluster, muf, which directly correlates with a strong biofilm-forming capability. We then identify the muf-associated bioactive product, mutanofactin-697 that contains a novel molecular scaffold, along with its biosynthetic logic. Further mode-of-action studies reveal mutanofactin-697 binds to S. mutans cells nonspecifically, increases bacterial hydrophobicity, and promotes bacterial adhesion and subsequent biofilm formation. Our findings provide the first example of a microbial secondary metabolite promoting biofilm formation via a physicochemical approach, highlighting the significance of secondary metabolism in mediating critical processes related to the development of dental caries.

2020 ◽  
Vol 9 (47) ◽  
Author(s):  
Jonathon L. Baker ◽  
Anna Edlund

ABSTRACT Streptococcus mutans strain B04Sm5 was recently shown to inhibit the growth of neighboring commensal bacteria using reutericyclin, an acylated tetramic acid produced by the muc biosynthetic gene cluster. Here, a complete genome sequence of B04Sm5 is reported.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3170 ◽  
Author(s):  
Vika Gabe ◽  
Tomas Kacergius ◽  
Saleh Abu-Lafi ◽  
Mouhammad Zeidan ◽  
Basheer Abu-Farich ◽  
...  

The accumulation of biofilm by Streptococcus mutans bacteria on hard tooth tissues leads to dental caries, which remains one of the most prevalent oral diseases. Hence, the development of new antibiofilm agents is of critical importance. The current study reports the results from testing the effectiveness of octyl gallate (C8-OG) against: (1) S. mutans biofilm formation on solid surfaces (polystyrene, glass), (2) acidogenicity, (3) and the expression of biofilm-related genes. The amount of biofilm formed by S. mutans bacteria was evaluated using the colorimetric method and optical profilometry. The pH of the biofilm growth medium was measured with microelectrode. A quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was used to assess the expression of genes encoding glucan binding protein B (gbpB), glucosyltransferases B, -C, -D (gtfB, -C, -D), and the F-ATPase β subunit of the F1 protein (atpD). The results show that C8-OG significantly diminished biofilm formation by exposed S. mutans on solid surfaces and suppressed acidogenicity in a dose-dependent manner, compared to unexposed bacteria (p < 0.05). The C8-OG concentration of 100.24 µM inhibited S. mutans biofilm development on solid surfaces by 100% and prevented a decrease in pH levels by 99%. In addition, the RT-qPCR data demonstrate that the biofilm-producing bacteria treated with C8-OG underwent a significant reduction in gene expression in the case of the four genes under study (gbpB, gtfC, gtfD, and atpD), and there was a slight decrease in expression of the gtfB gene. However, C8-OG treatments did not produce significant expression change compared to the control for the planktonic cells, although there was a significant increase for the atpD gene. Therefore, C8-OG might be a potent antibiofilm and/or anticaries agent for oral formulations that aim to reduce the prevalence of dental caries.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 215
Author(s):  
Aparna Vijayakumar ◽  
Hema Bhagavathi Sarveswari ◽  
Sahana Vasudevan ◽  
Karthi Shanmugam ◽  
Adline Princy Solomon ◽  
...  

Dental caries, the most common oral disease, is a major public healthcare burden and affects more than three billion people worldwide. The contemporary understanding of the need for a healthy microbiome and the emergence of antimicrobial resistance has resulted in an urgent need to identify compounds that curb the virulence of pathobionts without microbial killing. Through this study, we have demonstrated for the first time that 5,6,7-trihydroxyflavone (Baicalein) significantly downregulates crucial caries-related virulence phenotypes in Streptococcus mutans. Baicalein significantly inhibited biofilm formation by Streptococcus mutans UA159 (MBIC50 = 200 μM), without significant growth inhibition. Notably, these concentrations of baicalein did not affect the commensal S. gordonii. Strikingly, baicalein significantly reduced cell surface hydrophobicity, autoaggregation and acid production by S. mutans. Mechanistic studies (qRT-PCR) showed downregulation of various genes regulating biofilm formation, surface attachment, quorum sensing, acid production and competence. Finally, we demonstrate the potential translational value of baicalein by reporting synergistic interaction with fluoride against S. mutans biofilms.


2018 ◽  
Vol 773 ◽  
pp. 323-327
Author(s):  
Sroisiri Thaweboon ◽  
Boonyanit Thaweboon

Streptococcus mutans has been reported to be a major causative microorganism for oral biofilm associated with dental caries. Jasmine sambac or Arabian jasmine is a species of jasmine native to tropical and warm temperate regions particularly West and Southeast Asia. The antimicrobial activities of essential oil extracted from the flowers of J. sambac have been shown to attract researchers. Objective: To determine the anti-biofilm formation of S. mutans by mouthwash containing jasmine oil. Materials and Methods: S. mutans KPSK2, the cariogenic strain of oral streptococci was used in the study. The 24-h biofilms of S. mutans were formed on polystyrene plates treated with jasmine mouthwash. The 0.2% chlorhexidine gluconate and phosphate buffer saline mouthwash were used as a positive and negative control respectively. The amount of biofilm was quantified by crystal violet staining and spectrophotometry at an optical density of 595 nm. Results: Jasmine mouthwash showed a significant inhibitory effect on S. mutans biofilm formation by decreasing 43% of biofilm whereas that of chlorhexidine showed 71% reduction. Conclusion: The anti-biofilm formation property of jasmine mouthwash was elucidated; therefore it might be another drug of choice that can be used as an adjunct to control the oral health in the prevention of dental caries.


2015 ◽  
Vol 70 (11-12) ◽  
pp. 313-318
Author(s):  
Phuong T.M. Nguyen ◽  
Bac H. Vo ◽  
Nhung T. Tran ◽  
Quyen D. Van

Abstract This study was carried out to further examine the anti-biofilm activity of α-mangostin (αMG) isolated from Garcinia mangostana L. grown in Vietnam, against a strongly biofilm producing Streptococcus mutans, a major causative agent of dental caries. The obtained data indicated that topical applications (twice-daily, 60 s exposure each) of 150 μM αMG during biofilm formation on the surfaces of hydroxyapatite disks (sHA) by S. mutans UA159 resulted in 30.7% reduction in biofilm accumulation after 68 h of growth. The treatment did not affect the viability of S. mutans cells in the biofilms. The surface activities of two key enzymes responsible for biofilm formation, i.e. the glycosyltransferases GtfB and GtfC, were reduced by 20 and 35%, respectively (vs. vehicle control, P < 0.05). Interestingly, αMG specifically targeted S. mutans in mixed biofilms, resulting in the decrease of the S. mutans population and total biofilm biomass. αMG was also found to accumulate within the biofilm of S. mutans up to 4.5 μg/biofilm, equal to a concentration of >10 μM/biofilm. In conclusion, this study confirmed anti-biofilm activity of αMG against S. mutans. A brief exposure to αMG may suppress biofilm formation by targeting key enzymes imvolved in biofilm formation.


mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Mark J. Lee ◽  
Alexander M. Geller ◽  
Natalie C. Bamford ◽  
Hong Liu ◽  
Fabrice N. Gravelat ◽  
...  

ABSTRACTThe moldAspergillus fumigatuscauses invasive infection in immunocompromised patients. Recently, galactosaminogalactan (GAG), an exopolysaccharide composed of galactose andN-acetylgalactosamine (GalNAc), was identified as a virulence factor required for biofilm formation. The molecular mechanisms underlying GAG biosynthesis and GAG-mediated biofilm formation were unknown. We identified a cluster of five coregulated genes that were dysregulated in GAG-deficient mutants and whose gene products share functional similarity with proteins that mediate the synthesis of the bacterial biofilm exopolysaccharide poly-(β1-6)-N-acetyl-d-glucosamine (PNAG). Bioinformatic analyses suggested that the GAG cluster geneagd3encodes a protein containing a deacetylase domain. Because deacetylation ofN-acetylglucosamine residues is critical for the function of PNAG, we investigated the role of GAG deacetylation in fungal biofilm formation. Agd3 was found to mediate deacetylation of GalNAc residues within GAG and render the polysaccharide polycationic. As with PNAG, deacetylation is required for the adherence of GAG to hyphae and for biofilm formation. Growth of the Δagd3mutant in the presence of culture supernatants of the GAG-deficient Δuge3mutant rescued the biofilm defect of the Δagd3mutant and restored the adhesive properties of GAG, suggesting that deacetylation is an extracellular process. The GAG biosynthetic gene cluster is present in the genomes of members of thePezizomycotinasubphylum of theAscomycotaincluding a number of plant-pathogenic fungi and a single basidiomycete species,Trichosporon asahii, likely a result of recent horizontal gene transfer. The current study demonstrates that the production of cationic, deacetylated exopolysaccharides is a strategy used by both fungi and bacteria for biofilm formation.IMPORTANCEThis study sheds light on the biosynthetic pathways governing the synthesis of galactosaminogalactan (GAG), which plays a key role inA. fumigatusvirulence and biofilm formation. We find that bacteria and fungi use similar strategies to synthesize adhesive biofilm exopolysaccharides. The presence of orthologs of the GAG biosynthetic gene clusters in multiple fungi suggests that this exopolysaccharide may also be important in the virulence of other fungal pathogens. Further, these studies establish a molecular mechanism of adhesion in which GAG interacts via charge-charge interactions to bind to both fungal hyphae and other substrates. Finally, the importance of deacetylation in the synthesis of functional GAG and the extracellular localization of this process suggest that inhibition of deacetylation may be an attractive target for the development of novel antifungal therapies.


2017 ◽  
Vol 199 (8) ◽  
Author(s):  
Manoharan Shankar ◽  
Mohammad S. Hossain ◽  
Indranil Biswas

ABSTRACT Streptococcus mutans, an oral pathogen associated with dental caries, colonizes tooth surfaces as polymicrobial biofilms known as dental plaque. S. mutans expresses several virulence factors that allow the organism to tolerate environmental fluctuations and compete with other microorganisms. We recently identified a small hypothetical protein (90 amino acids) essential for the normal growth of the bacterium. Inactivation of the gene, SMU.2137, encoding this protein caused a significant growth defect and loss of various virulence-associated functions. An S. mutans strain lacking this gene was more sensitive to acid, temperature, osmotic, oxidative, and DNA damage-inducing stresses. In addition, we observed an altered protein profile and defects in biofilm formation, bacteriocin production, and natural competence development, possibly due to the fitness defect associated with SMU.2137 deletion. Transcriptome sequencing revealed that nearly 20% of the S. mutans genes were differentially expressed upon SMU.2137 deletion, thereby suggesting a pleiotropic effect. Therefore, we have renamed this hitherto uncharacterized gene as sprV (streptococcal pleiotropic regulator of virulence). The transcript levels of several relevant genes in the sprV mutant corroborated the phenotypes observed upon sprV deletion. Owing to its highly conserved nature, inactivation of the sprV ortholog in Streptococcus gordonii also resulted in poor growth and defective UV tolerance and competence development as in the case of S. mutans. Our experiments suggest that SprV is functionally distinct from its homologs identified by structure and sequence homology. Nonetheless, our current work is aimed at understanding the importance of SprV in the S. mutans biology. IMPORTANCE Streptococcus mutans employs several virulence factors and stress resistance mechanisms to colonize tooth surfaces and cause dental caries. Bacterial pathogenesis is generally controlled by regulators of fitness that are critical for successful disease establishment. Sometimes these regulators, which are potential targets for antimicrobials, are lost in the genomic context due to the lack of annotated homologs. This work outlines the regulatory impact of a small, highly conserved hypothetical protein, SprV, encoded by S. mutans. We show that SprV affects the transcript levels of various virulence factors required for normal growth, biofilm formation, stress tolerance, genetic competence, and bacteriocin production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yaqi Wang ◽  
Wei Cao ◽  
Justin Merritt ◽  
Zhoujie Xie ◽  
Hao Liu

FtsH belongs to the AAA+ ATP-dependent family of proteases, which participate in diverse cellular processes and are ubiquitous among bacteria, chloroplasts, and mitochondria. FtsH is poorly characterized in most organisms, especially compared to other major housekeeping proteases. In the current study, we examined the source of FtsH essentiality in the human oral microbiome species Streptococcus mutans, one of the primary etiological agents of dental caries. By creating a conditionally lethal ftsH mutant, we were able to identify a secondary suppressor missense mutation in the vicR gene, encoding the response regulator of the essential VicRK two-component system (TCS). Transcriptomic analysis of the vicR (G195R) mutant revealed significantly reduced expression of 46 genes, many of which were located within the genomic island Tnsmu2, which harbors the mutanobactin biosynthetic gene cluster. In agreement with the transcriptomic data, deletion of the mutanobactin biosynthetic gene cluster suppressed ftsH essentiality in S. mutans. We also explored the role of FtsH in S. mutans physiology and demonstrated its critical role in stress tolerance, especially acid stress. The presented results reveal the first insights within S. mutans for the pleiotropic regulatory function of this poorly understood global regulator.


2018 ◽  
Vol 6 (3) ◽  
pp. 38 ◽  
Author(s):  
Amy Melok ◽  
Lee Lee ◽  
Siti Mohamed Yussof ◽  
Tinchun Chu

Streptococcus mutans (S. mutans) is the main etiological bacteria present in the oral cavity that leads to dental caries. All of the S. mutans in the oral cavity form biofilms that adhere to the surfaces of teeth. Dental caries are infections facilitated by the development of biofilm. An esterified derivative of epigallocatechin-3-gallate (EGCG), epigallocatechin-3-gallate-stearate (EGCG-S), was used in this study to assess its ability to inhibit the growth and biofilm formation of S. mutans. The effect of EGCG-S on bacterial growth was evaluated with colony forming units (CFU) and log reduction; biofilm formation was qualitatively determined by Congo red assay, and quantitatively determined by crystal violet assay, fluorescence-based LIVE/DEAD assays to study the cell viability, and scanning electron microscopy (SEM) was used to evaluate the morphological changes. The results indicated that EGCG-S was able to completely inhibit growth and biofilm formation at concentrations of 250 µg/mL. Its effectiveness was also compared with a commonly prescribed mouthwash in the United States, chlorhexidine gluconate. EGCG-S was shown to be equally effective in reducing S. mutans growth as chlorhexidine gluconate. In conclusion, EGCG-S is potentially an anticariogenic agent by reducing bacterial presence in the oral cavity.


2018 ◽  
Author(s):  
Yesol Yoo ◽  
Dong-Ho Seo ◽  
Hyunjin Lee ◽  
Young-Do Nam ◽  
Myung-Ji Seo

ABSTRACTStreptococcus mutansplays a key role in the development of dental caries and promotes the formation of oral biofilm produced by glucosyltransferases (GTFs).Bacillus velezensisK68 was isolated from traditional fermented foods and inhibits biofilm formation mediated byS. mutans. Gene amplification results demonstrated thatB. velezensisK68 contained genes for the biosynthesis of 1-deoxynojirimycin (1-DNJ), a known GTF expression inhibitor. The presence of the GabT1, Yktc1, and GutB1 genes required for 1-DNJ synthesis inB. velezensisK68 was confirmed. Supernatant fromB. velezensisK68 culture medium inhibited biofilm formation by 84% whenS. mutanswas cultured for 48 h, and inhibited it maximally when 1% glucose was added to theS. mutansculture medium as a GTF substrate. In addition, supernatant fromB. velezensisK68 medium containing 3 ppb 1- DNJ decreasedS. mutanscell surface hydrophobicity by 79.0 ± 0.8% compared with that of untreated control. The supernatant containing 1-DNJ decreasedS. mutansadherence by 99.97% and 98.83% under sugar-dependent and sugar-independent conditions, respectively.S. mutanstreated with the supernatant exhibited significantly reduced expression of the essential GTF genesgtfB,gtfC,andgtfDcompared to that in the untreated group. Thus,B. velezensisinhibits the biofilm formation, adhesion, and GTF gene expression ofS. mutansthrough 1- DNJ production.IMPORTANCEDental caries is among the most common infectious diseases worldwide, and its development is closely associated with physiological factors of bacteria, such as the biofilm formation and glucosyltransferase production ofStreptococcus mutans.Biofilms are difficult to remove once they have formed due to the exopolysaccharide matrix produced by the microorganisms residing in them; thus, inhibiting biofilm formation is a current focal point of research into prevention of dental caries. This study describes the inhibitory properties ofBacillus velezensisK68, an organism isolated from traditional Korean fermented foods, against biofilm formation byS. mutans. Herein, we show thatB. velezensisinhibits the biofilm formation, adherence to surfaces, and glucosyltransferase production ofS. mutans.


Sign in / Sign up

Export Citation Format

Share Document