scholarly journals Dual RNAseq highlights the kinetics of skin microbiome and fish host responsiveness to bacterial infection

2020 ◽  
Author(s):  
J. Le Luyer ◽  
Q. Schull ◽  
P. Auffret ◽  
P. lopez ◽  
M. Crusot ◽  
...  

Abstracta)BackgroundTenacibaculum maritimum is a worldwide-distributed fish pathogen known for causing dramatic damages on a broad range of wild and farmed marine fish populations. Recently sequenced genome of T. maritimum strain NCIMB 2154T provided unprecedented information on the possible molecular mechanisms involved in virulence for this species. However, little is known on the dynamic on the infection in vivo, and information are lacking on both the intrinsic host response (gene expression) and its associated microbiome community. Here, we applied complementary omic approaches, including dual RNAseq and 16S rRNA gene metabarcoding sequencing using Nanopore and short-reads Illumina technologies to unravel the host-pathogens interplay in experimental infection system using the tropical fish Platax orbicularis as model.b)ResultsWe show that T. maritimum transcriptomic landscape during infection is characterized by an enhancement of antibiotic catalytic and glucan catalytic functions while decreasing specific sulphate assimilation process, compared to in vitro cultures. Simultaneously, fish host display a large palette of immune effectors, notably involving innate response and triggering acute inflammatory response. In addition, results suggest that fish activate adaptive immune response visible through stimulation of T-helper cells, Th17, with congruent reduction of Th2 and T-regulatory cells. Fish were however largely sensitive to infection, and less than 25% of them survived after 96hpi. These surviving fish showed no evidence of stress (cortisol levels) as well as no significant difference in microbiome diversity compared to control at the same sampling time. The presence of Tenacibaculum in resistant fish skin and the total absence of any skin lesion suggest that these fish did not escape contact with the pathogen but rather prevent the pathogen entry. In these individuals we detected the up-regulation of specific immune-related genes differentiating resistant from control at 96hpi, which suggests a possible genomic basis of resistance while no genetic variations in coding regions was reported.c)ConclusionHere we refine the interplay between common fish pathogens and host immune response during experimental infection. We further highlight key actors of defense response, pathogenicity and possible genomic bases of resistance to T. maritimum.

2020 ◽  
Author(s):  
jeremy le luyer ◽  
Quentin Schull ◽  
Pauline Auffret ◽  
Pierre Lopez ◽  
Margaux Crusot ◽  
...  

Abstract a) BackgroundTenacibaculum maritimum is a fish pathogen known for causing serious damage to a broad range of wild and farmed marine fish populations worldwide. The recently sequenced genome of T. maritimum strain NCIMB 2154T provided unprecedented information on the possible molecular mechanisms involved in the virulence of this species. However, little is known about the dynamic of infection in vivo, and information is lacking on both the intrinsic host response (gene expression) and its associated microbiome community. Here, we applied complementary omic approaches, including dual RNAseq and 16S rRNA gene metabarcoding sequencing using Nanopore and short-read Illumina technologies to unravel the host–pathogen interplay in an experimental infection system using the tropical fish Platax orbicularis as model.b) ResultsWe showed that the T. maritimum transcriptomic landscape during infection is characterised by an enhancement of antibiotic catalytic and glucan catalytic functions but a decrease in the sulfate assimilation process, compared with in vitro cultures. The fish host concurrently displays a large panel of immune effectors, notably involving innate response and triggering acute inflammatory response. In addition, our results suggest that fish activate an adaptive immune response visible through the stimulation of T-helper cells, Th17, with congruent reduction of Th2 and T-regulatory cells. Fish were, however, largely sensitive to infection, and less than 25% survived after 96 hpi. These surviving fish showed no evidence of stress (cortisol levels) or significant difference in microbiome diversity compared with controls at the same sampling time. The presence of Tenacibaculum in resistant fish skin and the total absence of any skin lesions suggest that these fish did not escape contact with the pathogen, but rather that they prevented pathogen entry. In these individuals, we detected up-regulation of specific immune-related genes differentiating resistant individuals from controls at 96 hpi, which suggests a possible genomic basis of resistance, although no genetic variation in coding regions were found.c) ConclusionHere we focus in detail on the interplay between common fish pathogens and host immune response during experimental infection. We further highlight key actors of defence response, pathogenicity and possible genomic bases of fish resistance to T. maritimum.


2020 ◽  
Author(s):  
Jeremy Le Luyer ◽  
Quentin Schull ◽  
Pauline Auffret ◽  
Pierre Lopez ◽  
Margaux Crusot ◽  
...  

Abstract Background: Tenacibaculum maritimum is a fish pathogen known for causing serious damage to a broad range of wild and farmed marine fish populations worldwide. The recently sequenced genome of T. maritimum strain NCIMB 2154 T provided unprecedented information on the possible molecular mechanisms involved in the virulence of this species. However, little is known about the dynamic of infection in vivo, and information is lacking on both the intrinsic host response (gene expression) and its associated microbiome community. Here, we applied complementary omic approaches, including dual RNAseq and 16S rRNA gene metabarcoding sequencing using Nanopore and short-read Illumina technologies to unravel the host–pathogen interplay in an experimental infection system using the tropical fish Platax orbicularis as model. Results: We showed that the T. maritimum transcriptomic landscape during infection is characterised by an enhancement of antibiotic catalytic and glucan catalytic functions but a decrease in the sulfate assimilation process, compared with in vitro cultures. The fish host concurrently displays a large panel of immune effectors, notably involving innate response and triggering acute inflammatory response. In addition, our results suggest that fish activate an adaptive immune response visible through the stimulation of T-helper cells, Th17, with congruent reduction of Th2 and T-regulatory cells. Fish were, however, largely sensitive to infection, and less than 25% survived after 96 hpi. These surviving fish showed no evidence of stress (cortisol levels) or significant difference in microbiome diversity compared with controls at the same sampling time. The presence of Tenacibaculum in resistant fish skin and the total absence of any skin lesions suggest that these fish did not escape contact with the pathogen, but rather that they prevented pathogen entry. In these individuals, we detected up-regulation of specific immune-related genes differentiating resistant individuals from controls at 96 hpi, which suggests a possible genomic basis of resistance, although no genetic variation in coding regions were found. Conclusions: Here we focus in detail on the interplay between common fish pathogens and host immune response during experimental infection. We further highlight key actors of defence response, pathogenicity and possible genomic bases of fish resistance to T. maritimum .


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
J. Le Luyer ◽  
Q. Schull ◽  
P. Auffret ◽  
P. Lopez ◽  
M. Crusot ◽  
...  

Abstract Background Tenacibaculum maritimum is a fish pathogen known for causing serious damage to a broad range of wild and farmed marine fish populations worldwide. The recently sequenced genome of T. maritimum strain NCIMB 2154T provided unprecedented information on the possible molecular mechanisms involved in the virulence of this species. However, little is known about the dynamic of infection in vivo, and information is lacking on both the intrinsic host response (gene expression) and its associated microbiota. Here, we applied complementary omic approaches, including dual RNAseq and 16S rRNA gene metabarcoding sequencing using Nanopore and short-read Illumina technologies to unravel the host–pathogen interplay in an experimental infection system using the tropical fish Platax orbicularis as model. Results We showed that the infection of the host is characterised by an enhancement of functions associated with antibiotic and glucans catabolism functions but a reduction of sulfate assimilation process in T. maritimum. The fish host concurrently displays a large panel of immune effectors, notably involving innate response and triggering acute inflammatory response. In addition, our results suggest that fish activate an adaptive immune response visible through the stimulation of T-helper cells, Th17, with congruent reduction of Th2 and T-regulatory cells. Fish were, however, largely sensitive to infection, and less than 25% survived after 96 hpi. These surviving fish showed no evidence of stress (cortisol levels) or significant difference in microbiome diversity compared with controls at the same sampling time. The presence of T. maritimum in resistant fish skin and the total absence of any skin lesions suggest that these fish did not escape contact with the pathogen, but rather that some mechanisms prevented pathogens entry. In resistant individuals, we detected up-regulation of specific immune-related genes differentiating resistant individuals from controls at 96 hpi, which suggests a possible genomic basis of resistance, although no genetic variation in coding regions was found. Conclusion Here we focus in detail on the interplay between common fish pathogens and host immune response during experimental infection. We further highlight key actors of defence response, pathogenicity and possible genomic bases of fish resistance to T. maritimum.


2016 ◽  
Vol 84 (6) ◽  
pp. 1879-1886 ◽  
Author(s):  
Lena J. Heung ◽  
Tobias M. Hohl

Cryptococcus neoformansis an opportunistic fungal pathogen that is inhaled into the lungs and can lead to life-threatening meningoencephalitis in immunocompromised patients. Currently, the molecular mechanisms that regulate the mammalian immune response to respiratory cryptococcal challenge remain poorly defined. DAP12, a signaling adapter for multiple pattern recognition receptors in myeloid and natural killer (NK) cells, has been shown to play both activating and inhibitory roles during lung infections by different bacteria and fungi. In this study, we demonstrate that DAP12 plays an important inhibitory role in the immune response toC. neoformans. Infectious outcomes in DAP12−/−mice, including survival and lung fungal burden, are significantly improved compared to those in C57BL/6 wild-type (WT) mice. We find that eosinophils and macrophages are decreased while NK cells are increased in the lungs of infected DAP12−/−mice. In contrast to WT NK cells, DAP12−/−NK cells are able to repressC. neoformansgrowthin vitro. Additionally, DAP12−/−macrophages are more highly activated than WT macrophages, with increased production of tumor necrosis factor (TNF) and CCL5/RANTES and more efficient uptake and killing ofC. neoformans. These findings suggest that DAP12 acts as a brake on the pulmonary immune response toC. neoformansby promoting pulmonary eosinophilia and by inhibiting the activation and antifungal activities of effector cells, including NK cells and macrophages.


2013 ◽  
Vol 19 (1) ◽  
pp. 105-116 ◽  
Author(s):  
T Rahman ◽  
MBR Chowdhury ◽  
MAR Faruk

Studies were conducted to examine the efficacy of selected chemotherapeutic and medicinal plants against common fungal fish pathogens. Four different doses of available fungicidal agents viz., lime + salt, brilliant green, malachite green and methylene blue were applied to the fresh culture of newly isolated fish pathogenic fungi (Aphanomyces invadans, Saprolegnia sp. and Achlya sp.) under in-vitro condition and minimum inhibitory dose (MID) was determined. Based on in-vitro results, chemotherapeutic were applied to the experimental infection of fish (Barbonymus gonionotus). Salt + lime, brilliant green and malachite green offered better results in reducing the rate of infection followed by medium effective methylene blue. Medicinal plants were selected on the basis of previous studies. Crude extracts were prepared from various parts (leaves and bulb) of neem (Azadirachta indica), turmeric (Curcuma longa) and shoti (C. zedoaria) and four different doses were applied to the fresh culture of above mentioned fungal pathogens under in-vitro condition to determine MID. Treatment trial was performed using the MID of the highly effective plant extracts (viz., tumeric, shoti, neem + tumeric and neem + shoti) on experimental infection of fish. Turmeric and neem + tumeric were found to be the most effective ones. Thus, medicinal plants would be an effective and alternative control measure along with selected chemotherapeutic against fungal diseases of fish.DOI: http://dx.doi.org/10.3329/pa.v19i1.17361 Progress. Agric. 19(1): 105 - 116, 2008 


2020 ◽  
Vol 21 (17) ◽  
pp. 6417 ◽  
Author(s):  
Alejandro Cuevas ◽  
Nicolás Saavedra ◽  
Luis A. Salazar ◽  
Marcela F. Cavalcante ◽  
Jacqueline C. Silva ◽  
...  

Atherosclerosis is a chronic inflammatory disease, whose progression and stability are modulated, among other factors, by an innate and adaptive immune response. Prodiginines are bacterial secondary metabolites with antiproliferative and immunomodulatory activities; however, their effect on the progression or vulnerability of atheromatous plaque has not been evaluated. This study assessed the therapeutic potential of prodigiosin and undecylprodigiosin on inflammatory marker expression and atherosclerosis. An in vitro and in vivo study was carried out. Migration, low-density lipoprotein (LDL) uptake and angiogenesis assays were performed on cell types involved in the pathophysiology of atherosclerosis. In addition, male LDL receptor null (Ldlr-/-) C57BL/6J mice were treated with prodigiosin or undecylprodigiosin for 28 days. Morphometric analysis of atherosclerotic plaques, gene expression of atherogenic factors in the aortic sinus and serum cytokine quantification were performed. The treatments applied had slight effects on the in vitro tests performed, highlighting the inhibitory effect on the migration of SMCs (smooth muscle cells). On the other hand, although no significant difference in atherosclerotic plaque progression was observed, gene expression of IL-4 and chemokine (C-C motif) ligand 2 (Ccl2) was downregulated. In addition, 50 µg/Kg/day of both treatments was sufficient to inhibit circulating tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2) and interferon-gamma (IFN-γ) in serum. These results suggested that prodigiosin and undecylprodigiosin modulated inflammatory markers and could have an impact in reducing atherosclerotic plaque vulnerability.


2020 ◽  
Vol 86 (14) ◽  
Author(s):  
Karen K. Dittmann ◽  
Bastian Barker Rasmussen ◽  
Jette Melchiorsen ◽  
Eva C. Sonnenschein ◽  
Lone Gram ◽  
...  

ABSTRACT The Phaeobacter genus has been explored as probiotics in mariculture as a sustainable strategy for the prevention of bacterial infections. Its antagonistic effect against common fish pathogens is predominantly due to the production of the antibacterial compound tropodithietic acid (TDA), and TDA-producing strains have repeatedly been isolated from mariculture environments. Despite many in vitro trials targeting pathogens, little is known about its impact on host-associated microbiomes in mariculture. Hence, the purpose of this study was to investigate how the addition of a TDA-producing Phaeobacter inhibens strain affects the microbiomes of live feed organisms and fish larvae. We used 16S rRNA gene sequencing to characterize the bacterial diversity associated with live feed microalgae (Tetraselmis suecica), live feed copepod nauplii (Acartia tonsa), and turbot (Scophthalmus maximus) eggs/larvae. The microbial communities were unique to the three organisms investigated, and the addition of the probiotic bacterium had various effects on the diversity and richness of the microbiomes. The structure of the live feed microbiomes was significantly changed, while no effect was seen on the community structure associated with turbot larvae. The changes were seen primarily in particular taxa. The Rhodobacterales order was indigenous to all three microbiomes and decreased in relative abundance when P. inhibens was introduced in the copepod and turbot microbiomes, while it was unaffected in the microalgal microbiome. Altogether, the study demonstrates that the addition of P. inhibens in higher concentrations, as part of a probiotic regime, does not appear to cause major imbalances in the microbiome, but the effects were specific to closely related taxa. IMPORTANCE This work is an essential part of the risk assessment of the application of roseobacters as probiotics in mariculture. It provides insights into the impact of TDA-producing Phaeobacter inhibens on the commensal bacteria related to mariculture live feed and fish larvae. Also, the study provides a sequencing-based characterization of the microbiomes related to mariculture-relevant microalga, copepods, and turbot larvae.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. M. Livernois ◽  
B. A. Mallard ◽  
S. L. Cartwright ◽  
A. Cánovas

AbstractHeat stress negatively affects health and production in cows. Examining the cellular response to heat stress could reveal underlying protective molecular mechanisms associated with superior resilience and ultimately enable selection for more resilient cattle. This type of investigation is increasingly important as future predictions for the patterns of heat waves point to increases in frequency, severity, and duration. Cows identified as high immune responders based on High Immune Response technology (HIR) have lower disease occurrence compared to their average and low immune responder herd-mates. In this study, our goal was to identify epigenetic differences between high and low immune responder cows in response to heat stress. We examined genome-wide DNA methylation of blood mononuclear cells (BMCs) isolated from high and low cows, before and after in vitro heat stress. We identified differential methylation of promoter regions associated with a variety of biological processes including immune function, stress response, apoptosis, and cell signalling. The specific differentially methylated promoter regions differed between samples from high and low cows, and results revealed pathways associated with cellular protection during heat stress.


2021 ◽  
Author(s):  
Yin-Ping Guo ◽  
Li Shao ◽  
Li Wang ◽  
Man-Yun Chen ◽  
Wei Zhang ◽  
...  

Abstract Background: Ginsenoside CK (GCK) serves as the potential anti-colorectal cancer (CRC) protopanaxadiol (PPD)-type saponin, which could be mainly bio-converted to yield PPD by gut microbiota. Meanwhile, the anti-CRC effects of GCK could be altered by gut microbiota due to its different diversity in CRC patients. We aimed to investigate the bioconversion variation of GCK mediated by gut microbiota from CRC patients by comparing with healthy subjects.Methods: Gut microbiota profiled by 16S rRNA gene sequencing was collected from healthy volunteers and CRC patients. GCK was incubated with gut microbiota in vitro. A LC-MS/MS method was validated to quantify GCK and PPD after incubation at different time points.Results: The bioconversion of GCK in healthy subjects group was much faster than CRC group, as well as the yield of PPD. Moreover, significant difference of PPD concentration between healthy subjects group and CRC group could be observed at 12 h, 48 h and 72 h check points. According to 16S rRNA sequencing, the profiles of gut microbiota derived from healthy volunteers and CRC patients significantly varied, in which 12 differentially abundant taxon were found, such as Bifidobacterium, Roseburia, Bacteroides and Collinsella. Spearman’s correlation analysis showed bacteria enriched in healthy subjects group were positively associated with biotransformation of GCK, while bacteria enriched in CRC group displayed non correlation characters. Among them, Roseburia which could secrete β-glycosidase showed the strongest positive association with the bioconversion of GCK.Conclusion: The bioconversion of GCK in healthy subjects was much faster than CRC patients mediated by gut microbiota, which might alter the anti-CRC effects of GCK.


Sign in / Sign up

Export Citation Format

Share Document