scholarly journals Metagenomic profiling of host-associated bacteria from 8 datasets of the red alga Porphyra purpurea, with MetaPhlAn 3.0

2020 ◽  
Author(s):  
Orestis Nousias ◽  
Federica Montesanto

AbstractMicrobial communities play a fundamental role in the association with marine algae, in fact they are recognized to be actively involved in growth and morphogenesis.Porphyra purpurea is a red algae commonly found in the intertidal zone with an high economical value, indeed several species belonging to the genus Porphyra are intensely cultivated in the Eastern Asian countries. Moreover, P. purpurea is widely used as model species in different fields, mainly due to its peculiar life cycle. Despite of that, little is known about the microbial community associated to this species. Here we report the microbial-associated diversity of P. purpurea in four different localities (Ireland, Italy United Kingdom and USA) through the analysis of eight metagenomic datasets obtained from the publicly available metagenomic nucleotide database (https://www.ebi.ac.uk/ena/). The metagenomic datasets were quality controlled with FastQC version 0.11.8, pre-processed with Trimmomatic version 0.39 and analysed with Methaplan 3.0, with a reference database containing clade specific marker genes from ~ 99.500 bacterial genomes, following the pan-genome approach, in order to identify the putative bacterial taxonomies and their relative abundances. Furthermore, we compared the results to the 16S rRNA metagenomic analysis pipeline of MGnify database to evaluate the effectiveness of the two methods. Out of the 43 bacterial species identified with MetaPhlAn 3.0 only 5 were common with the MGnify results and from the 21 genera, only 9 were common. This approach highlighted the different taxonomical resolution of a 16S rRNA OTU-based method in contrast to the pan-genome approach deployed by MetaPhlAn 3.0.

2019 ◽  
Author(s):  
Florencia Tettamanti Boshier ◽  
Sujatha Srinivasan ◽  
Anthony Lopez ◽  
Noah G. Hoffman ◽  
Sean Proll ◽  
...  

Whereas 16S rRNA gene amplicon sequencing quantifies relative abundances of bacterial taxa, variation in total bacterial load between samples restricts its ability to reflect absolute concentration of individual species. Quantitative PCR (qPCR) can quantify individual species, but it is not practical to develop a suite of qPCR assays for every bacterium present in a diverse sample. We analyzed 1320 samples from 20 women with a history of frequent bacterial vaginosis, who self-collected vaginal swabs daily over 60 days. We inferred bacterial concentrations by taking the product of species relative abundance (assessed by 16S rRNA gene amplicon sequencing) and total bacterial load (measured by broad-range 16S rRNA gene qPCR). Log10-converted inferred concentrations correlated with targeted qPCR (r = 0. 935, p<2.2e-16) for seven key bacterial species. The mean inferred concentration error varied across bacteria, with rarer bacterial vaginosis-associated bacteria associated with larger errors. 92% of errors >0.5 log10 occurred when relative abundance was <10%. Many errors occurred during early bacterial expansion or late contraction. When relative abundance of a species is >10%, inferred concentrations are reliable proxies for targeted qPCR. However, targeted qPCR is required to capture bacteria at low relative abundance, particularly with BV-associated bacteria during the early onset of bacterial vaginosis.


2021 ◽  
Author(s):  
Anna Cusco ◽  
Daniel Pérez ◽  
Joaquim Viñes ◽  
Norma Fàbregas ◽  
Olga Francino

Abstract BackgroundLong-read sequencing in metagenomics facilitates the assembly of complete genomes out of complex microbial communities. These genomes include essential biologic information such as the ribosomal genes or the mobile genetic elements, which are usually missed with short-reads. We applied long-read metagenomics with Nanopore sequencing to retrieve high-quality metagenome-assembled genomes (HQ MAGs) from a dog fecal sample.ResultsWe used nanopore long-read metagenomics and frameshift aware correction on a canine fecal sample and retrieved eight single-contig HQ MAGs, which were > 90% complete with < 5% contamination, and contained most ribosomal genes and tRNAs. At the technical level, we demonstrated that a high-molecular-weight DNA extraction improved the metagenomics assembly contiguity, the recovery of the rRNA operons, and the retrieval of longer and circular contigs that are potential HQ MAGs. These HQ MAGs corresponded to Succinivibrio, Sutterella, Prevotellamassilia, Phascolarctobacterium, Catenibacterium, Blautia, and Enterococcus genera. Linking our results to previous gastrointestinal microbiome reports (metagenome or 16S rRNA-based), we found that some bacterial species on the gastrointestinal tract seem to be more canid-specific –Succinivibrio, Prevotellamassilia, Phascolarctobacterium, Blautia_A sp900541345–, whereas others are more broadly distributed among animal and human microbiomes –Sutterella, Catenibacterium, Enterococcus, and Blautia sp003287895. Sutterella HQ MAG is potentially the first reported genome assembly for Sutterella stercoricanis, as assigned by 16S rRNA gene similarity. Moreover, we show that long reads are essential to gain biological insights that are otherwise missed in short-read MAGs catalogs, as shown by the mobilome functions detected in the long-read HQ MAGs.ConclusionsWe recovered eight single-contig HQ MAGs from canine feces of a healthy dog with nanopore long-reads. We also retrieved relevant biological insights from these specific bacterial species previously missed in public databases, such as complete ribosomal operons and mobilome functions. The high-molecular-weight DNA extraction improved the assembly's contiguity, whereas the high-accuracy basecalling, the raw read error correction, the assembly polishing, and the frameshift correction reduced the insertions and deletion errors. Both experimental and analytical steps ensured the retrieval of complete bacterial genomes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Myungsook Kim ◽  
Seung-Tae Lee ◽  
Songyi Choi ◽  
Hyukmin Lee ◽  
Sun Sung Kwon ◽  
...  

AbstractThe roles of individual bacteria and their relationship in the development of colorectal cancer (CRC) remain unclear. We aimed to determine the prevalence of CRC-associated bacteria using quantitative real-time PCR (qPCR) or 16S rRNA analysis and the statistical correlations of patient demographics and clinical characteristics comprising alcohol consumption with CRC-associated bacteria. We determined the prevalence of five CRC-associated bacterial species in 38 CRC patients (39 samples) and 21 normal individuals using qPCR, and the relative abundance of bacterial taxa in the gut microbiome was assessed using 16S rRNA analysis. Fusobacterium nucleatum was the only bacterium that was significantly (P < 0.0001) more prevalent in the cancer tissue (82.1%) than in the normal tissue (0%) by qPCR. 16S rRNA analysis showed a significant correlation between six operational taxonomic units (OTUs), namely, the genera Fusobacterium, Peptostreptococcus, Collinsella, Prevotella, Parvimonas, and Gemella, in patients with CRC. An integrated analysis using 16S rRNA data and epidemiological characteristics showed that alcohol consumption was significantly correlated with the abundance of Fusobacterium OTUs. The correlation of alcohol consumption with the abundance of Fusobacterium OTUs in cancer tissue discovered using 16S rRNA analysis suggests a possible link between alcohol metabolism and subsequent tumorigenesis caused by F. nucleatum.


2021 ◽  
Vol 9 (8) ◽  
pp. 1570
Author(s):  
Chien-Hsun Huang ◽  
Chih-Chieh Chen ◽  
Yu-Chun Lin ◽  
Chia-Hsuan Chen ◽  
Ai-Yun Lee ◽  
...  

The current taxonomy of the Lactiplantibacillus plantarum group comprises of 17 closely related species that are indistinguishable from each other by using commonly used 16S rRNA gene sequencing. In this study, a whole-genome-based analysis was carried out for exploring the highly distinguished target genes whose interspecific sequence identity is significantly less than those of 16S rRNA or conventional housekeeping genes. In silico analyses of 774 core genes by the cano-wgMLST_BacCompare analytics platform indicated that csbB, morA, murI, mutL, ntpJ, rutB, trmK, ydaF, and yhhX genes were the most promising candidates. Subsequently, the mutL gene was selected, and the discrimination power was further evaluated using Sanger sequencing. Among the type strains, mutL exhibited a clearly superior sequence identity (61.6–85.6%; average: 66.6%) to the 16S rRNA gene (96.7–100%; average: 98.4%) and the conventional phylogenetic marker genes (e.g., dnaJ, dnaK, pheS, recA, and rpoA), respectively, which could be used to separat tested strains into various species clusters. Consequently, species-specific primers were developed for fast and accurate identification of L. pentosus, L. argentoratensis, L. plantarum, and L. paraplantarum. During this study, one strain (BCRC 06B0048, L. pentosus) exhibited not only relatively low mutL sequence identities (97.0%) but also a low digital DNA–DNA hybridization value (78.1%) with the type strain DSM 20314T, signifying that it exhibits potential for reclassification as a novel subspecies. Our data demonstrate that mutL can be a genome-wide target for identifying and classifying the L. plantarum group species and for differentiating novel taxa from known species.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Chelsea A. Weitekamp ◽  
Allison Kvasnicka ◽  
Scott P. Keely ◽  
Nichole E. Brinkman ◽  
Xia Meng Howey ◽  
...  

Abstract Background Across taxa, animals with depleted intestinal microbiomes show disrupted behavioral phenotypes. Axenic (i.e., microbe-free) mice, zebrafish, and fruit flies exhibit increased locomotor behavior, or hyperactivity. The mechanism through which bacteria interact with host cells to trigger normal neurobehavioral development in larval zebrafish is not well understood. Here, we monoassociated zebrafish with either one of six different zebrafish-associated bacteria, mixtures of these host-associates, or with an environmental bacterial isolate. Results As predicted, the axenic cohort was hyperactive. Monoassociation with three different host-associated bacterial species, as well as with the mixtures, resulted in control-like locomotor behavior. Monoassociation with one host-associate and the environmental isolate resulted in the hyperactive phenotype characteristic of axenic larvae, while monoassociation with two other host-associated bacteria partially blocked this phenotype. Furthermore, we found an inverse relationship between the total concentration of bacteria per larvae and locomotor behavior. Lastly, in the axenic and associated cohorts, but not in the larvae with complex communities, we detected unexpected bacteria, some of which may be present as facultative predators. Conclusions These data support a growing body of evidence that individual species of bacteria can have different effects on host behavior, potentially related to their success at intestinal colonization. Specific to the zebrafish model, our results suggest that differences in the composition of microbes in fish facilities could affect the results of behavioral assays within pharmacological and toxicological studies.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Haleh Forouhandeh ◽  
Sepideh Zununi Vahed ◽  
Hossein Ahangari ◽  
Vahideh Tarhriz ◽  
Mohammad Saeid Hejazi

Abstract Lighvan cheese (Lighvan panir) is among the most famous traditional cheese in Iran for its desired aroma and flavor. Undoubtedly, the lactic acid bacteria especially the genus Lactobacillus are the critical factors in developing the aroma, flavor, and texture in Lighvan cheese. In this study, the Lactobacillus population of the main Lighvan cheese was investigated. The Lactobacillus of the main Lighvan cheese was isolated using specific culture methods according to previously published Guidelines. Then, the phylogenetic features were investigated and the phenotypic characteristics were examined using specific culture methods. Twenty-eight Gram-positive bacterial species were identified belonged to the genus Lactobacillus. According to the same sequences as each other, three groups (A, B, and C) of isolates were categorized with a high degree of similarity to L. fermentum (100%) and L. casei group (L. casei, L. paracasei, and L. rhamnosus) (99.0 to 100%). Random amplified polymorphic DNA (RAPD) fingerprint analysis manifested the presence of three clusters that were dominant in traditional Lighvan cheese. Cluster І was divided into 4 sub-clusters. By the result of carbohydrate fermentation pattern and 16S rRNA sequencing, isolates were identified as L. rhamnosus. The isolates in clusters II and III represented L. paracasei and L. fermentum, respectively as they were identified by 16S rRNA sequencing and fermented carbohydrate patterns. Our result indicated that the specific aroma and flavor of traditional Lighvan cheese can be related to its Lactobacillus population including L. fermentum, L. casei, L. paracasei, and L. rhamnosus. Graphical abstract


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hongyu Guo ◽  
Jun Li

AbstractOn single-cell RNA-sequencing data, we consider the problem of assigning cells to known cell types, assuming that the identities of cell-type-specific marker genes are given but their exact expression levels are unavailable, that is, without using a reference dataset. Based on an observation that the expected over-expression of marker genes is often absent in a nonnegligible proportion of cells, we develop a method called scSorter. scSorter allows marker genes to express at a low level and borrows information from the expression of non-marker genes. On both simulated and real data, scSorter shows much higher power compared to existing methods.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Matthew R. Olm ◽  
Alexander Crits-Christoph ◽  
Spencer Diamond ◽  
Adi Lavy ◽  
Paula B. Matheus Carnevali ◽  
...  

ABSTRACT Longstanding questions relate to the existence of naturally distinct bacterial species and genetic approaches to distinguish them. Bacterial genomes in public databases form distinct groups, but these databases are subject to isolation and deposition biases. To avoid these biases, we compared 5,203 bacterial genomes from 1,457 environmental metagenomic samples to test for distinct clouds of diversity and evaluated metrics that could be used to define the species boundary. Bacterial genomes from the human gut, soil, and the ocean all exhibited gaps in whole-genome average nucleotide identities (ANI) near the previously suggested species threshold of 95% ANI. While genome-wide ratios of nonsynonymous and synonymous nucleotide differences (dN/dS) decrease until ANI values approach ∼98%, two methods for estimating homologous recombination approached zero at ∼95% ANI, supporting breakdown of recombination due to sequence divergence as a species-forming force. We evaluated 107 genome-based metrics for their ability to distinguish species when full genomes are not recovered. Full-length 16S rRNA genes were least useful, in part because they were underrecovered from metagenomes. However, many ribosomal proteins displayed both high metagenomic recoverability and species discrimination power. Taken together, our results verify the existence of sequence-discrete microbial species in metagenome-derived genomes and highlight the usefulness of ribosomal genes for gene-level species discrimination. IMPORTANCE There is controversy about whether bacterial diversity is clustered into distinct species groups or exists as a continuum. To address this issue, we analyzed bacterial genome databases and reports from several previous large-scale environment studies and identified clear discrete groups of species-level bacterial diversity in all cases. Genetic analysis further revealed that quasi-sexual reproduction via horizontal gene transfer is likely a key evolutionary force that maintains bacterial species integrity. We next benchmarked over 100 metrics to distinguish these bacterial species from each other and identified several genes encoding ribosomal proteins with high species discrimination power. Overall, the results from this study provide best practices for bacterial species delineation based on genome content and insight into the nature of bacterial species population genetics.


2021 ◽  
Vol 22 (10) ◽  
pp. 5373
Author(s):  
Juan A. Subirana ◽  
Xavier Messeguer

Little is known about DNA tandem repeats across prokaryotes. We have recently described an enigmatic group of tandem repeats in bacterial genomes with a constant repeat size but variable sequence. These findings strongly suggest that tandem repeat size in some bacteria is under strong selective constraints. Here, we extend these studies and describe tandem repeats in a large set of Bacillus. Some species have very few repeats, while other species have a large number. Most tandem repeats have repeats with a constant size (either 52 or 20–21 nt), but a variable sequence. We characterize in detail these intriguing tandem repeats. Individual species have several families of tandem repeats with the same repeat length and different sequence. This result is in strong contrast with eukaryotes, where tandem repeats of many sizes are found in any species. We discuss the possibility that they are transcribed as small RNA molecules. They may also be involved in the stabilization of the nucleoid through interaction with proteins. We also show that the distribution of tandem repeats in different species has a taxonomic significance. The data we present for all tandem repeats and their families in these bacterial species will be useful for further genomic studies.


Sign in / Sign up

Export Citation Format

Share Document