scholarly journals Exo-β-N-acetylmuramidase NamZ of Bacillus subtilis is the founding member of a family of exo-lytic peptidoglycan hexosaminidases

2021 ◽  
Author(s):  
Maraike Müller ◽  
Matthew Calvert ◽  
Isabel Hottmann ◽  
Robert Maria Kluj ◽  
Tim Teufel ◽  
...  

ABSTRACTEndo-β-N-acetylmuramidases, commonly known as lysozymes, are well-characterized antimicrobial enzymes that potentially lyse bacterial cells. They catalyze an endo-lytic cleavage of the peptidoglycan, the structural component of the bacterial cell wall; i.e. they hydrolyze glycosidic N-acetylmuramic acid (MurNAc)-β-1,4-N-acetylglucosamine (GlcNAc)-bonds within the heteroglycan backbone of peptidoglycan. In contrast, little is known about exo-β-N-acetylmuramidases, catalyzing an exo-lytic cleavage of β-1,4-MurNAc entities from the non-reducing ends of peptidoglycan chains. Such an enzyme was identified earlier in the bacterium Bacillus subtilis, but the corresponding gene has remained unknown so far. We identified ybbC of B. subtilis, renamed namZ, as encoding the reported exo-β-N-acetylmuramidase. A ΔnamZ mutant accumulated specific cell wall fragments and showed growth defects under starvation conditions, indicating a role of NamZ in cell wall turnover. Recombinant NamZ protein specifically hydrolyzed the artificial substrate para-nitrophenyl β-MurNAc and the peptidoglycan-derived disaccharide MurNAc-β-1,4-GlcNAc. Together with the exo-β-N-acetylglucosaminidase NagZ and the exo-muramoyl-L-alanine amidase AmiE, NamZ degraded intact peptidoglycan by sequential hydrolysis from the non-reducing ends. NamZ is a member of the DUF1343 protein family of unknown function and shows no significant sequence identity with known glycosidases. A structural model of NamZ revealed a putative active site located in a cleft within the interface of two subdomains, one of which constituting a Rossmann-fold-like domain, unusual for glycosidases. On this basis, we propose that NamZ represents the founding member of a novel family of peptidoglycan hexosaminidases, which is mainly present in the phylum Bacteroidetes and, less frequently, within Firmicutes (Bacilli, Clostridia), Actinobacteria and Gammaproteobacteria.

1988 ◽  
Vol 34 (3) ◽  
pp. 256-261 ◽  
Author(s):  
Michael P. Heaton ◽  
Robert B. Johnston ◽  
Thomas L. Thompson

An alanine racemase (EC 5.1.1.1) mutant (Dal−) of Bacillus subtilis required small amounts of D-alanine to synthesize an osmotically stable cell wall in certain growth media. Investigation of the conditions which caused lysis in hypotonic media revealed that in addition to complex media, such as nutrient broth and acid-hydrolyzed casein, glycine inhibited stable cell wall formation. D-Alanine prevented the glycine inhibition. Up to 99% lysis occurred in both dilute and dense cell suspensions (optical densities up to 110) within 2.5 h after adding 1% glycine to late log phase cultures. Intracellular enzymes recovered from the lysate were as active as those from lysozyme-disrupted cells. No amino acid tested other than glycine induced lysis. Dal− mutants can be used for controlled lysis of bacterial cells to facilitate the isolation of normal intracellular constituents and bioengineered products from fermentation processes. Cell walls of most bacteria contain D-alanine; thus, this strategy should be applicable to a wide variety of microorganisms.


2012 ◽  
Vol 260-261 ◽  
pp. 1017-1021
Author(s):  
Xin Ying Wang ◽  
Yong Tao Liu ◽  
Min Hui ◽  
Ji Fei Xu

Escherichia coli and Bacillus subtilis as objects of the study, ultrasonic fragmentation acted on the bacterial cells in different growth stages, results showed that, it’s similar to the crushing effect of ultrasound on E. coli and B. subtilis cells of different growth stages, the highest crushing rate in the logarithmic phase, reached to 95.8% and 94.3% respectively, the crushing rate of adjustment phase is lowest, maintained at around 60%, the crushing rate stability cell was centered, which can be achieved 90%. The structure of the bacterial cell wall didn’t the main factor to decide the ultrasonic fragmentation effect, but different growth periods of bacterial cells did the determinant.


2017 ◽  
Author(s):  
Norbert S. Hill ◽  
Jason D. Zuke ◽  
P. J. Buske ◽  
An-Chun Chien ◽  
Petra Anne Levin

ABSTRACTChanges in nutrient availability have dramatic and well-defined impacts on both transcription and translation in bacterial cells. At the same time, the role of post-translational control in adaptation to nutrient-poor environments is poorly understood. Here we report a role for the bacterial Clp proteases in degradation of the division inhibitor UgtP during growth in nutrient-poor medium. Under nutrient-rich conditions, interactions with its substrate UDP-glucose promote interactions between UgtP and the tubulin-like cell division protein FtsZ inBacillus subtilis, inhibiting maturation of the cytokinetic ring and increasing cell size. In nutrient-poor medium, reductions in UDP-glucose availability favor UgtP oligomerization, sequestering it from FtsZ and allowing division to occur at a smaller cell mass. Intriguingly, in nutrient-poor conditions UgtP levels are reduced ∼ 3-fold independent of UDP-glucose, suggesting an additional layer of regulation.B. subtiliscells cultured under different nutrient conditions indicate that UgtP accumulation is controlled through a nutrient-dependent post-translational mechanism dependent on the Clp proteases. Notably, all threeB. subtilisClp chaperones appeared able to target UgtP for degradation during growth in nutrient-poor conditions. Together these findings highlight conditional proteolysis as a mechanism for bacterial adaptation to a rapidly changing nutritional landscape.


1998 ◽  
Vol 180 (3) ◽  
pp. 753-758 ◽  
Author(s):  
Wei Liu ◽  
Stephen Eder ◽  
F. Marion Hulett

ABSTRACT The tagAB and tagDEF operons, which are adjacent and divergently transcribed, encode genes responsible for cell wall teichoic acid synthesis in Bacillus subtilis. TheBacillus data presented here suggest that PhoP and PhoR are required for direct repression of transcription of the two operons under phosphate starvation conditions but have no regulatory role under phosphate-replete conditions. These data identify for the first time that PhoP∼P has a negative role in Pho regulon gene regulation.


1998 ◽  
Vol 180 (15) ◽  
pp. 4007-4010 ◽  
Author(s):  
Ying Qi ◽  
F. Marion Hulett

ABSTRACT tagA, tagD, and tuaA operons are responsible for the synthesis of cell wall anionic polymer, teichoic acid, and teichuronic acid, respectively, in Bacillus subtilis. Under phosphate starvation conditions, teichuronic acid is synthesized while teichoic acid synthesis is inhibited. Expression of these genes is controlled by PhoP-PhoR, a two-component system. It has been proposed that PhoP∼P plays a key role in the activation oftuaA and the repression of tagA andtagD. In this study, we demonstrated the role of PhoP∼P in the switch process from teichoic acid synthesis to teichuronic acid synthesis, by using an in vitro transcription system. The results indicate that PhoP∼P is sufficient to repress the transcription of the tagA and tagD promoters and also to activate the transcription of the tuaA promoter.


2020 ◽  
Author(s):  
Marketa Samalova ◽  
Kareem Elsayad ◽  
Alesia Melnikava ◽  
Alexis Peaucelle ◽  
Evelina Gahurova ◽  
...  

ABSTRACTExpansins facilitate cell expansion via mediating pH-dependent cell wall (CW) loosening. However, the role of expansins in the control of biomechanical CW properties in the tissue and organ context remains elusive. We determined hormonal responsiveness and specificity of expression and localization of expansins predicted to be direct targets of cytokinin signalling. We found EXPA1 homogenously distributed throughout the CW of columella/ lateral root cap, while EXPA10 and EXPA14 localized predominantly at the three-cell boundaries of epidermis/cortex in various root zones. Cell type-specific localization of EXPA15 overlaps with higher CW stiffness measured via Brillouin light scattering microscopy. As indicated by both Brillouin frequency shift and AFM-measured Young’s modulus, EXPA1 overexpression upregulated CW stiffness, associated with shortening of the root apical meristem and root growth arrest. We propose that root growth in Arabidopsis requires delicate orchestration of biomechanical CW properties via tight regulation of various expansins’ localization to specific cell types and extracellular domains.


2021 ◽  
Author(s):  
Sean Wilson ◽  
Ethan Garner

ABSTRACTMost bacteria are surrounded by their cell wall, a highly crosslinked protective envelope of peptidoglycan. To grow, bacteria must continuously remodel their wall, inserting new material and breaking old bonds. Bond cleavage is performed by cell wall hydrolases, allowing the wall to expand. Understanding the functions of individual hydrolases has been impeded by their redundancy: single knockouts usually present no phenotype. We used an exhaustive multiple-knockout approach to determine the minimal set of hydrolases required for growth in Bacillus subtilis. We identified 42 candidate cell wall hydrolases. Strikingly, we were able to remove all but two of these genes in a single strain; this “Δ40” strain shows a normal growth rate, indicating that none of the 40 hydrolases are necessary for cell growth. The Δ40 strain does not shed old cell wall, demonstrating that turnover is not essential for growth.The remaining two hydrolases in the Δ40 strain are LytE and CwlO, previously shown to be synthetically lethal. Either can be knocked out in Δ40, indicating that either hydrolase alone is sufficient for cell growth. Environmental screening and zymography revealed that LytE activity is inhibited by Mg2+ and that RlpA-like proteins may stimulate LytE activity. Together, these results demonstrate that the only essential function of cell wall hydrolases in B. subtilis is to enable cell growth by expanding the wall and that LytE or CwlO alone is sufficient for this function. These experiments introduce the Δ40 strain as a tool to study hydrolase activity and regulation in B. subtilis.IMPORTANCEIn order to grow, bacterial cells must both create and break down their cell wall. The enzymes that are responsible for these processes are the target of some of our best antibiotics. Our understanding of the proteins that break down the wall – cell wall hydrolases – has been limited by redundancy among the large number of hydrolases many bacteria contain. To solve this problem, we identified 42 cell wall hydrolases in Bacillus subtilis and created a strain lacking 40 of them. We show that cells can survive using only a single cell wall hydrolase; this means that to understand the growth of B. subtilis in standard laboratory conditions, it is only necessary to study a very limited number of proteins, simplifying the problem substantially. We additionally show that the Δ40 strain is a research tool to characterize hydrolases, using it to identify 3 ‘helper’ hydrolases that act in certain stress conditions.


2007 ◽  
Vol 189 (8) ◽  
pp. 3280-3289 ◽  
Author(s):  
Hendrik Szurmant ◽  
Michael A. Mohan ◽  
P. Michael Imus ◽  
James A. Hoch

ABSTRACT The YycFG two-component system is the only signal transduction system in Bacillus subtilis known to be essential for cell viability. This system is highly conserved in low-G+C gram-positive bacteria, regulating important processes such as cell wall homeostasis, cell membrane integrity, and cell division. Four other genes, yycHIJK, are organized within the same operon with yycF and yycG in B. subtilis. Recently, it was shown that the product of one of these genes, the YycH protein, regulated the activity of this signal transduction system, whereas no function could be assigned to the other genes. Results presented here show that YycI and YycH proteins interact to control the activity of the YycG kinase. Strains carrying individual in-frame deletion of the yycI and yycH coding sequences were constructed and showed identical phenotypes, namely a 10-fold-elevated expression of the YycF-dependent gene yocH, growth defects, as well as a cell wall defect. Cell wall and growth defects were a direct result of overregulation of the YycF regulon, since a strain overexpressing YycF showed phenotypes similar to those of yycH and yycI deletion strains. Both YycI and YycH proteins are localized outside the cytoplasm and attached to the membrane by an N-terminal transmembrane sequence. Bacterial two-hybrid data showed that the YycH, YycI, and the kinase YycG form a ternary complex. The data suggest that YycH and YycI control the activity of YycG in the periplasm and that this control is crucial in regulating important cellular processes.


Sign in / Sign up

Export Citation Format

Share Document