scholarly journals Climate warming changes synchrony of plants and pollinators

2021 ◽  
Author(s):  
Jonas Freimuth ◽  
Oliver Bossdorf ◽  
J. F. Scheepens ◽  
Franziska M. Willems

AbstractClimate warming changes the phenology of many species. When interacting organisms respond differently, climate change may disrupt their interactions and affect the stability of ecosystems. Here, we used GBIF occurrence records to examine phenology trends in plants and their associated insect pollinators in Germany since the 1960s. We found strong phenological advances in plants, but differences in the extent of shifts among pollinator groups. The temporal trends in plant and insect phenologies were generally associated with interannual temperature variation, and thus likely driven by climate change. The phenological advancement of plants did not depend on their level of pollinator dependence. When examining the temporal co-occurrence of plant-pollinator pairs from 1980 onwards, the temporal trends in their synchrony again depended on the pollinator group: while the synchrony of plant-butterfly interactions remained unchanged, interactions with bees and hoverflies tended to become more synchronized, mainly because the phenology of plants responded more strongly to climate change and plants caught up with these pollinators. If the observed trends continue, these interactions are expected to become more asynchronous again in the future. Our study demonstrates that climate change affects the phenologies of interacting groups of organisms, and that it also influences their synchrony.

2013 ◽  
Vol 59 (3) ◽  
pp. 418-426 ◽  
Author(s):  
Victoria L. Scaven ◽  
Nicole E. Rafferty

Abstract Growing concern about the influence of climate change on flowering plants, pollinators, and the mutualistic interactions between them has led to a recent surge in research. Much of this research has addressed the consequences of warming for phenological and distributional shifts. In contrast, relatively little is known about the physiological responses of plants and insect pollinators to climate warming and, in particular, how these responses might affect plant-pollinator interactions. Here, we summarize the direct physiological effects of temperature on flowering plants and pollinating insects to highlight ways in which plant and pollinator responses could affect floral resources for pollinators, and pollination success for plants, respectively. We also consider the overall effects of these responses on plant-pollinator interaction networks. Plant responses to warming, which include altered flower, nectar, and pollen production, could modify floral resource availability and reproductive output of pollinating insects. Similarly, pollinator responses, such as altered foraging activity, body size, and life span, could affect patterns of pollen flow and pollination success of flowering plants. As a result, network structure could be altered as interactions are gained and lost, weakened and strengthened, even without the gain or loss of species or temporal overlap. Future research that addresses not only how plant and pollinator physiology are affected by warming but also how responses scale up to affect interactions and networks should allow us to better understand and predict the effects of climate change on this important ecosystem service.


2021 ◽  
Author(s):  
Tim van der Schriek ◽  
Konstantinos V. Varotsos ◽  
Dimitra Founda ◽  
Christos Giannakopoulos

<p>Historical changes, spanning 1971–2016, in the Athens Urban Heat Island (UHI) over summer were assessed by contrasting two air temperature records from established meteorological stations in urban and rural settings. When contrasting two 20-year historical periods (1976–1995 and 1996–2015), there is a significant difference in summer UHI regimes. The stronger UHI-intensity of the second period (1996–2015) is likely linked to increased pollution and heat input. Observations suggest that the Athens summer UHI characteristics even fluctuate on multi-annual basis. Specifically, the reduction in air pollution during the Greek Economic Recession (2008-2016) probable subtly changed the UHI regime, through lowering the frequencies of extremely hot days (T<sub>max</sub> > 37 °C) and nights (T<sub>min</sub> > 26 °C).</p><p>Subsequently, we examined the future temporal trends of two different UHIs in Athens (Greece) under three climate change scenarios. A five-member regional climate model (RCM) sub-ensemble from EURO-CORDEX with a horizontal resolution of 0.11° (~12 × 12 km) simulated air temperature data, spanning the period 1976–2100, for the two station sites. Three future emissions scenarios (RCP2.6, RCP4.5 and RCP8.5) were implanted in the simulations after 2005. The observed daily maximum and minimum air temperature data (T<sub>max</sub> and T<sub>min</sub>) from two historical UHI regimes (1976–1995 and 1996–2015, respectively) were used, separately, to bias-adjust the model simulations thus creating two sets of results.</p><p>This novel approach allowed us to assess future temperature developments in Athens under two different UHI intensity regimes. We found that the future frequency of days with T<sub>max</sub> > 37 °C in Athens was only different from rural background values under the intense UHI regime. There is a large increase in the future frequency of nights with T<sub>min</sub> > 26 °C in Athens under all UHI regimes and climate scenarios; these events remain comparatively rare at the rural site.</p><p>This study shows a large urban amplification of the frequency of extremely hot days and nights which is likely forced by increasing air pollution and heat input. Consequently, local mitigation policies aimed at decreasing urban atmospheric pollution are expected to be also effective in reducing urban temperatures during extreme heat events in Athens under all future climate change scenarios. Such policies therefore have multiple benefits, including: reducing electricity (energy) needs, improving living quality and decreasing heat- and pollution related illnesses/deaths.</p><p> </p>


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 637 ◽  
Author(s):  
Tim van der Schriek ◽  
Konstantinos V. Varotsos ◽  
Christos Giannakopoulos ◽  
Dimitra Founda

This is the first study to look at future temporal urban heath island (UHI) trends of Athens (Greece) under different UHI intensity regimes. Historical changes in the Athens UHI, spanning 1971–2016, were assessed by contrasting two air temperature records from stable meteorological stations in contrasting urban and rural settings. Subsequently, we used a five-member regional climate model (RCM) sub-ensemble from EURO-CORDEX with a horizontal resolution of 0.11° (~12 × 12 km) to simulate air temperature data, spanning the period 1976–2100, for the two station sites. Three future emissions scenarios (RCP2.6, RCP4.5, and RCP8.5) were implanted in the simulations after 2005 covering the period 2006–2100. Two 20-year historical reference periods (1976–1995 and 1996–2015) were selected with contrasting UHI regimes; the second period had a stronger intensity. The daily maximum and minimum air temperature data (Tmax and Tmin) for the two reference periods were perturbed to two future periods, 2046–2065 and 2076–2095, under the three RCPs, by applying the empirical quantile mapping (eqm) bias-adjusting method. This novel approach allows us to assess future temperature developments in Athens under two UHI intensity regimes that are mainly forced by differences in air pollution and heat input. We found that the future frequency of days with Tmax > 37 °C in Athens was only different from rural background values under the intense UHI regime. Thus, the impact of heatwaves on the urban environment of Athens is dependent on UHI intensity. There is a large increase in the future frequency of nights with Tmin > 26 °C in Athens under all UHI regimes and climate scenarios; these events remain comparatively rare at the rural site. This large urban amplification of the frequency of extremely hot nights is likely caused by air pollution. Consequently, local mitigation policies aimed at decreasing urban atmospheric pollution are expected to be highly effective in reducing urban temperatures and extreme heat events in Athens under future climate change scenarios. Such policies directly have multiple benefits, including reduced electricity (energy) needs, improved living quality and strong health advantages (heat- and pollution-related illness/deaths).


2013 ◽  
Vol 368 (1624) ◽  
pp. 20120482 ◽  
Author(s):  
Gilles Gauthier ◽  
Joël Bêty ◽  
Marie-Christine Cadieux ◽  
Pierre Legagneux ◽  
Madeleine Doiron ◽  
...  

Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative annual thawing degree-days increased by 37% and snow-melt date advanced by 4–7 days over a 23-year period), we found little evidence for changes in the phenology, abundance or productivity of several vertebrate species (snow goose, foxes, lemmings, avian predators and one passerine). Only primary production showed a response to warming (annual above-ground biomass of wetland graminoids increased by 123% during this period). We nonetheless found evidence for potential mismatches between herbivores and their food plants in response to warming as snow geese adjusted their laying date by only 3.8 days on average for a change in snow-melt of 10 days, half of the corresponding adjustment shown by the timing of plant growth (7.1 days). We discuss several reasons (duration of time series, large annual variability, amplitude of observed climate change, nonlinear dynamic or constraints imposed by various rate of warming with latitude in migrants) to explain the lack of response by herbivores and predators to climate warming at our study site. We also show how length and intensity of monitoring could affect our ability to detect temporal trends and provide recommendations for future monitoring.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2403 ◽  
Author(s):  
Kim ◽  
Lee ◽  
Kim ◽  
Kim

This study assessed the water supply stability for Boryeong multipurpose dam by applying future dry climate change scenarios and Soil and Water Assessment Tool (SWAT). CMCC-CM, INM-CM4, and IPSL-CM5A-MR RCP 4.5 and 8.5 scenarios were selected as the future dry conditions using Runs theory and Standardized Precipitation Index (SPI). For historical (1980–1999), present (2000–2019), and future periods (2030s, 2050s, 2070s, and 2090s) of the 6 scenarios, SWAT model was used to simulate the future dam water supply stability. The stability was evaluated in terms of reliability (RT), resilience (RS), and vulnerability (V) based on the monthly target storage. The results showed that the future RT can be decreased to 0.803 in 2050s IPSL-CM5A-MR RCP 8.5 scenario from present 0.955. The future RS and V showed the minimum value of 0.003 and the biggest value of 3567.6 × 106 m3 in 2070s IPSL-CM5A-MR RCP 4.5 scenario. The future RT, RS, and V showed that the dam has low resilience and is vulnerable to future drought scenarios.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Fubo Zhao ◽  
Yiping Wu ◽  
Jinyu Hui ◽  
Bellie Sivakumar ◽  
Xianyong Meng ◽  
...  

Abstract Background Soil organic carbon (SOC) plays a crucial role in the global carbon cycle and terrestrial ecosystem functions. It is widely known that climate change and soil water content (SWC) could influence the SOC dynamics; however, there are still debates about how climate change, especially climate warming, and SWC impact SOC. We investigated the spatiotemporal changes in SOC and its responses to climate warming and root-zone SWC change using the coupled hydro-biogeochemical model (SWAT-DayCent) and climate scenarios data derived under the three Representative Concentration Pathways (RCPs2.6, 4.5, and 8.5) from five downscaled Global Climate Models (GCMs) in a typical loess watershed––the Jinghe River Basin (JRB) on the Chinese Loess Plateau. Results The air temperature would increase significantly during the future period (2017–2099), while the annual precipitation would increase by 2.0–13.1% relative to the baseline period (1976–2016), indicating a warmer and wetter future in the JRB. Driven by the precipitation variation, the root-zone SWC would also increase (by up to 27.9% relative to the baseline under RCP4.5); however, the SOC was projected to decrease significantly under the future warming climate. The combined effects of climate warming and SWC change could more reasonably explain the SOC loss, and this formed hump-shaped response surfaces between SOC loss and warming-SWC interactions under both RCP2.6 and 8.5, which can help explain diverse warming effects on SOC with changing SWC. Conclusions The study showed a significant potential carbon source under the future warmer and wetter climate in the JRB, and the SOC loss was largely controlled by future climate warming and the root-zone SWC as well. The hump-shaped responses of the SOC loss to climate warming and SWC change demonstrated that the SWC could mediate the warming effects on SOC loss, but this mediation largely depended on the SWC changing magnitude (drier or wetter soil conditions). This mediation mechanism about the effect of SWC on SOC would be valuable for enhancing soil carbon sequestration in a warming climate on the Loess Plateau.


Author(s):  
Angga Yudaputra ◽  
Izu Andry Fijridiyanto ◽  
Inggit Puji Astuti ◽  
Rizmoon Nurul Zulkarnaen ◽  
Ade Yuswandi ◽  
...  

Aims: This study aims to predict the future geographic distribution shift of invasive plant species Austroeupathorium inulifolium as the impact of global climate change. Study Design: The rising temperature and precipitation change lead to the geographic distribution shift of organisms. A. inulifolium belongs to invasive plant species that often causes a substantial economic loss and ecological degradation in the invaded areas. Modelling of species distribution using the climate-based model could be used to understand the geographic distribution shift of invasive species in the future scenario under global climate change. Place and Duration of Study: Center for Plant Conservation and Botanic Gardens – LIPI and 6 months. Methodology: The total 2228 of occurrence records were derived from the Global Biodiversity Information Facility (GBIF) database. The seven climatic variables were selected from 19 variables using a pairwise correlation test (vifcor) with a threshold >0.7. The ensemble model was used by combining Random Forest (RF) and Support Vector Machine (SVM). Results: Both two models are well-performed either using AUC or TSS evaluation methods. RF and SVM have AUC >0.95, and TSS >0.8. The predicted current distribution tends to have larger distribution areas compared to observed occurrence records. The predicted future distribution seems to be shifted in several parts of North America and Europe. Conclusion: The geographic distribution of invasive plant species A. inulifolium will be shifted to the Northern part of globe in 2090. Mean temperature of driest quarter and precipitation of warmest quarter are the two most important variables that determine the distribution pattern of the A. inulifolium. The predictive distribution pattern of invasive plant A. inulifolium would be important to provide information about the impact of climate change to the geographic distribution shift of this species.


2009 ◽  
Vol 03 (03) ◽  
pp. 195-208
Author(s):  
GE JIANJUN

Through the prediction of climate change on Qinghai-Tibet plateau, the thermal conditions in permafrost region and degenerating range of permafrost are predicted under two different warming conditions with the help of the numerical simulation technique. General design principles of subgrade engineering in permafrost region under climate change are consequently suggested. This paper analyzes and discusses the stability and safety of subgrade engineering in permafrost region under temperature rising and summarizes the effect of climate change on subgrade engineering in permafrost region along Qinghai-Tibet railway.


Author(s):  
Daniel Sol

The extraordinary biodiversity of Earth is currently threatened by the destruction of natural habitats, climate change, invasive species, and overexploitation. More and more, ecologists are starting to recognise that preserving the maximum number of species is insufficient. If we want to preserve functional ecosystems for the future and continue to enjoy their benefits, we must also protect phylogenetic and functional diversity. But to do this, it is not enough to delimit protected areas, we must also learn to combine the exploitation of resources with the preservation of key elements of biodiversity that guarantee the stability and functioning of ecosystems.


Author(s):  
Hongjun Jiang ◽  
Ting Liu ◽  
Shiping Gao ◽  
Ruijun Wang ◽  
Ruchun Zhang ◽  
...  

Aim:Artemisia annua L. is the one and only original plant used to isolate artemisinin which is a highly effective remedy to fight malaria. Climate change leads to change of distribution and suitable range for many species and A. annua is no exception. However, it is not clear that the potential distribution and suitable range change of this unique plant under climate change. Therefore, we present this research to study its change in the future. Location: Global. Methods: Since the accuracy of species distribution models was affected by occurrence records and environmental variables, 1062 presence records and 7 variables were picked out to build ensemble models with 10 different algorithms by means of biomod2 under current and future climate scenarios. Results: At present, except SRE, the AUC values of the rest models were greater than 0.8, and the TSS values were greater than 0.6, the values of ensemble model were 0.968 and 0.826 respectively. Mean temperature of driest quarter was the dominant factor to shape the range of A. annua and its optimum interval ranged from 4.8 to 23.3ºC. The high suitable habitats of A. annua were mainly located in Eastern Asia, Western Europe, Central Europe. In the future, the high suitable area would decline at 15.55% to 25.87%. Main conclusions: Ensemble models showed it performed better than any the single one. At present, the high suitable habitat simulated by ensemble model was in accordance with the actual occurrence records. In the future, the high suitable habitat for A. annua would move northeast, and disappear in North America. They would increase with time under each SSP, but sharply decline while comparing with the current one. This study can be used to protect wild resource and guide cultivation for A. annua, which would make modest contribution to fight malaria.


Sign in / Sign up

Export Citation Format

Share Document