scholarly journals Interhemispheric connectivity endures across species: An allometric exposé on the corpus callosum

2021 ◽  
Author(s):  
Ben Cipollini ◽  
Garrison W. Cottrell

Rilling & Insel have argued that in primates, bigger brains have proportionally fewer anatomical interhemispheric connections, leading to reduced functional connectivity between the hemispheres (1). They based this on a comparison between surface areas of the corpus callosum and cortex rather than estimating connection counts, while leaving out other quantities also dependent on brain size such as callosal fiber density, neuron density, and number of functional areas.We use data from the literature to directly estimate connection counts. First, we estimate callosal fiber density as a function of brain size. We validate this by comparing out-of-sample human data to our function’s estimate. We then mine the literature to obtain function estimates for all other quantities, and use them to estimate intra- and interhemispheric white matter connection counts as a function of brain size.The results show a much larger decrease in the scaling of interhemispheric to intrahemispheric connections than previously estimated. However, we hypothesize that raw connection counts are the wrong quantity to be estimating when considering functional connectivity. Instead, we hypothesize that functional connectivity is related to connection counts relative to the number of cortical areas.Accordingly, we estimate inter-area connection counts for intra- and interhemispheric connectivity and find no difference in how they scale with brain size. We find that, on average, an interhemispheric inter-area connection contains 3-8x more connections than an intrahemispheric inter-area connection, regardless of brain size. In doing so, we find that the fiber count of the human corpus callosum has been underestimated by 20%.Significance StatementThere are arguments in the literature that larger brains have proportionally fewer interhemispheric connections. We find that the decrease is even larger than previously estimated. However, we argue that this quantity is the wrong thing to measure: Rather, we should measure functional connectivity between cortical areas. We show that the ratio of interhemispheric and intrahemispheric connectivity between cortical areas is constant across mammalian species. These findings are consistent with a growing literature that suggest interhemispheric connectivity is special across all primate species.

2015 ◽  
Vol 282 (1818) ◽  
pp. 20151535 ◽  
Author(s):  
Kimberley A. Phillips ◽  
Cheryl D. Stimpson ◽  
Jeroen B. Smaers ◽  
Mary Ann Raghanti ◽  
Bob Jacobs ◽  
...  

Interhemispheric communication may be constrained as brain size increases because of transmission delays in action potentials over the length of axons. Although one might expect larger brains to have progressively thicker axons to compensate, spatial packing is a limiting factor. Axon size distributions within the primate corpus callosum (CC) may provide insights into how these demands affect conduction velocity. We used electron microscopy to explore phylogenetic variation in myelinated axon density and diameter of the CC from 14 different anthropoid primate species, including humans. The majority of axons were less than 1 µm in diameter across all species, indicating that conduction velocity for most interhemispheric communication is relatively constant regardless of brain size. The largest axons within the upper 95th percentile scaled with a progressively higher exponent than the median axons towards the posterior region of the CC. While brain mass among the primates in our analysis varied by 97-fold, estimates of the fastest cross-brain conduction times, as conveyed by axons at the 95th percentile, varied within a relatively narrow range between 3 and 9 ms across species, whereas cross-brain conduction times for the median axon diameters differed more substantially between 11 and 38 ms. Nonetheless, for both size classes of axons, an increase in diameter does not entirely compensate for the delay in interhemispheric transmission time that accompanies larger brain size. Such biophysical constraints on the processing speed of axons conveyed by the CC may play an important role in the evolution of hemispheric asymmetry.


2021 ◽  
Author(s):  
Burke Q. Rosen ◽  
Eric Halgren

A simple method is derived for estimating the absolute number of axons linking cortical areas from a whole-cortex diffusion-MRI (dMRI) connectome. We estimate the conversion factor from dMRI tractography to axons using the histologically-measured callosal fiber density, then allocate axons between regions in proportion to dMRI connectivity. Median connectivity is estimated as ~2,700 axons between cortical areas within-hemisphere and ~540 axons interhemispherically, with axons connecting functionally-related areas surprisingly sparse.


2020 ◽  
Author(s):  
Vanessa Siffredi ◽  
Maria G Preti ◽  
Valeria Kebets ◽  
Silvia Obertino ◽  
Richard J Leventer ◽  
...  

Abstract The corpus callosum is the largest white matter pathway in the brain connecting the two hemispheres. In the context of developmental absence (agenesis) of the corpus callosum (AgCC), a proposed candidate for neuroplastic response is strengthening of intrahemispheric pathways. To test this hypothesis, we assessed structural and functional connectivity in a uniquely large cohort of children with AgCC (n = 20) compared with typically developing controls (TDC, n = 29), and then examined associations with neurobehavioral outcomes using a multivariate data-driven approach (partial least squares correlation, PLSC). For structural connectivity, children with AgCC showed a significant increase in intrahemispheric connectivity in addition to a significant decrease in interhemispheric connectivity compared with TDC, in line with the aforementioned hypothesis. In contrast, for functional connectivity, children with AgCC and TDC showed a similar pattern of intrahemispheric and interhemispheric connectivity. In conclusion, we observed structural strengthening of intrahemispheric pathways in children born without corpus callosum, which seems to allow for functional connectivity comparable to a typically developing brain, and were relevant to explain neurobehavioral outcomes in this population. This neuroplasticity might be relevant to other disorders of axonal guidance, and developmental disorders in which corpus callosum alteration is observed.


2017 ◽  
Author(s):  
Roel M. Willems ◽  
Franziska Hartung

Behavioral evidence suggests that engaging with fiction is positively correlated with social abilities. The rationale behind this link is that engaging with fictional narratives offers a ‘training modus’ for mentalizing and empathizing. We investigated the influence of the amount of reading that participants report doing in their daily lives, on connections between brain areas while they listened to literary narratives. Participants (N=57) listened to two literary narratives while brain activation was measured with fMRI. We computed time-course correlations between brain regions, and compared the correlation values from listening to narratives to listening to reversed speech. The between-region correlations were then related to the amount of fiction that participants read in their daily lives. Our results show that amount of fiction reading is related to functional connectivity in areas known to be involved in language and mentalizing. This suggests that reading fiction influences social cognition as well as language skills.


2021 ◽  
pp. 1-12
Author(s):  
Carel P. van Schaik ◽  
Zegni Triki ◽  
Redouan Bshary ◽  
Sandra A. Heldstab

Both absolute and relative brain sizes vary greatly among and within the major vertebrate lineages. Scientists have long debated how larger brains in primates and hominins translate into greater cognitive performance, and in particular how to control for the relationship between the noncognitive functions of the brain and body size. One solution to this problem is to establish the slope of cognitive equivalence, i.e., the line connecting organisms with an identical bauplan but different body sizes. The original approach to estimate this slope through intraspecific regressions was abandoned after it became clear that it generated slopes that were too low by an unknown margin due to estimation error. Here, we revisit this method. We control for the error problem by focusing on highly dimorphic primate species with large sample sizes and fitting a line through the mean values for adult females and males. We obtain the best estimate for the slope of circa 0.27, a value much lower than those constructed using all mammal species and close to the value expected based on the genetic correlation between brain size and body size. We also find that the estimate of cognitive brain size based on cognitive equivalence fits empirical cognitive studies better than the encephalization quotient, which should therefore be avoided in future studies on primates and presumably mammals and birds in general. The use of residuals from the line of cognitive equivalence may change conclusions concerning the cognitive abilities of extant and extinct primate species, including hominins.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nashaiman Pervaiz ◽  
Hongen Kang ◽  
Yiming Bao ◽  
Amir Ali Abbasi

Abstract Background There has been a rapid increase in the brain size relative to body size during mammalian evolutionary history. In particular, the enlarged and globular brain is the most distinctive anatomical feature of modern humans that set us apart from other extinct and extant primate species. Genetic basis of large brain size in modern humans has largely remained enigmatic. Genes associated with the pathological reduction of brain size (primary microcephaly-MCPH) have the characteristics and functions to be considered ideal candidates to unravel the genetic basis of evolutionary enlargement of human brain size. For instance, the brain size of microcephaly patients is similar to the brain size of Pan troglodyte and the very early hominids like the Sahelanthropus tchadensis and Australopithecus afarensis. Results The present study investigates the molecular evolutionary history of subset of autosomal recessive primary microcephaly (MCPH) genes; CEP135, ZNF335, PHC1, SASS6, CDK6, MFSD2A, CIT, and KIF14 across 48 mammalian species. Codon based substitutions site analysis indicated that ZNF335, SASS6, CIT, and KIF14 have experienced positive selection in eutherian evolutionary history. Estimation of divergent selection pressure revealed that almost all of the MCPH genes analyzed in the present study have maintained their functions throughout the history of placental mammals. Contrary to our expectations, human-specific adoptive evolution was not detected for any of the MCPH genes analyzed in the present study. Conclusion Based on these data it can be inferred that protein-coding sequence of MCPH genes might not be the sole determinant of increase in relative brain size during primate evolutionary history.


Author(s):  
Lisa Bartha-Doering ◽  
Ernst Schwartz ◽  
Kathrin Kollndorfer ◽  
Florian Ph. S. Fischmeister ◽  
Astrid Novak ◽  
...  

AbstractThe present study is interested in the role of the corpus callosum in the development of the language network. We, therefore, investigated language abilities and the language network using task-based fMRI in three cases of complete agenesis of the corpus callosum (ACC), three cases of partial ACC and six controls. Although the children with complete ACC revealed impaired functions in specific language domains, no child with partial ACC showed a test score below average. As a group, ACC children performed significantly worse than healthy controls in verbal fluency and naming. Furthermore, whole-brain ROI-to-ROI connectivity analyses revealed reduced intrahemispheric and right intrahemispheric functional connectivity in ACC patients as compared to controls. In addition, stronger functional connectivity between left and right temporal areas was associated with better language abilities in the ACC group. In healthy controls, no association between language abilities and connectivity was found. Our results show that ACC is associated not only with less interhemispheric, but also with less right intrahemispheric language network connectivity in line with reduced verbal abilities. The present study, thus, supports the excitatory role of the corpus callosum in functional language network connectivity and language abilities.


2012 ◽  
Vol 509 (1) ◽  
pp. 5-8 ◽  
Author(s):  
Brian Johnson ◽  
Kai Zhang ◽  
Michael Gay ◽  
Thomas Neuberger ◽  
Silvina Horovitz ◽  
...  

2018 ◽  
Author(s):  
Meyer Gabriel ◽  
Caponcy Julien ◽  
Paul A. Salin ◽  
Comte Jean-Christophe

AbstractLocal field potential (LFP) recording is a very useful electrophysiological method to study brain processes. However, this method is criticized for recording low frequency activity in a large area of extracellular space potentially contaminated by distal activity. Here, we theoretically and experimentally compare ground-referenced (RR) with differential recordings (DR). We analyze electrical activity in the rat cortex with these two methods. Compared with RR, DR reveals the importance of local phasic oscillatory activities and their coherence between cortical areas. Finally, we show that DR provides a more faithful assessment of functional connectivity caused by an increase in the signal to noise ratio, and of the delay in the propagation of information between two cortical structures.


2016 ◽  
Author(s):  
Felix Fischer ◽  
Florian Pieper ◽  
Edgar Galindo-Leon ◽  
Gerhard Engler ◽  
Claus C. Hilgetag ◽  
...  

AbstractCortical activity patterns change in different depths of general anesthesia. Here we investigate the associated network level changes of functional connectivity. We recorded ongoing electrocorticographic (ECoG) activity from the ferret temporo-parieto-occipital cortex under various levels of isoflurane and determined the functional connectivity by computing amplitude envelope correlations. Through hierarchical clustering, we derived typical connectivity patterns corresponding to light, intermediate and deep anesthesia. Generally, amplitude correlation strength increased strongly with depth of anesthesia across all cortical areas and frequency bands. This was accompanied by the emergence of burstsuppression activity in the ECoG signal and a change of the spectrum of the amplitude envelope. Normalizing the functional connectivity patterns showed that the topographical structure remained similar across depths of anesthesia, resembling the functional association of the underlying cortical areas. Thus, while strength and temporal properties of amplitude co-modulation vary depending on the activity of local neural circuits, their network-level interaction pattern is presumably most strongly determined by the underlying structural connectivity.


Sign in / Sign up

Export Citation Format

Share Document