scholarly journals DsbA-L protects against diabetic renal injury through the adipo-renal axis

2021 ◽  
Author(s):  
Lingfeng Zeng ◽  
Ming Yang ◽  
Chun Hu ◽  
Li Zhao ◽  
Xianghui Chen ◽  
...  

AbstractDisulfide-bond A oxidoreductase-like protein (DsbA-L) is an adiponectin-interacting protein that is highly expressed in adipose tissue. The adipo-renal axis involves adipocyte release of signaling molecules that are recruited to kidney and regulate kidney function. We have found that the DsbA-L modulated the progression of diabetic nephropathy, but the precise mechanism of this modulation is unknown. Here, the transgenic mice overexpressing DsbA-L protein in fat (fDsbA-L) were used to verify that the renoprotective role of DsbA-L whether by adipo-renal axis. Mice were divided into four groups: a normal (Control) group, STZ induced diabetic mice, fDsbA-L mice and diabetic fDsbA-L mice (n=6). Diabetes was induced in mice by STZ 100mg/kg and continued HFD feeding for 12 weeks. Compared with the control group, the weight, blood glucose,and urine protein levels and the pathological changes in the kidney tissue of diabetic mice were increased significantly, accompanied by increased NLRP3,caspase-1, IL-1β, IL-18, FN, and Collagen1 mRNA and protein expression, which were reduced in diabetic fDsbA-L mice. Interestingly, the level of adiponectin in serum and kidney expression in diabetic mice was reduced significantly compared to that in the control group. However this change was reversed in diabetic fDsbA-L mice. These data suggest that the overexpression of DsbA-L in the adipocytes of mice can protect against diabetic renal injury through anti-inflammatory mediators,and may be mediated by the adipo-renal axis.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ying Xie ◽  
Yuanyuan Ruan ◽  
Huimei Zou ◽  
Yixin Wang ◽  
Xin Wu ◽  
...  

<b><i>Objective:</i></b> The goal of the present study was to determine the expression of yes-associated protein 1 (YAP1) in renal tissues of mice with lupus nephritis (LN) and elucidate its role in the progression of renal fibrosis. <b><i>Methods:</i></b> C57BL/6 mice and MRL/lpr mice were selected for experimental comparison. Mouse kidney tissues were removed and sectioned for hematoxylin and eosin staining, Masson’s trichome staining, Sirius staining, and immunohistochemistry. The mRNA and protein levels of YAP1 in mouse kidney tissues were detected, and the correlation between YAP1 and fibronectin (FN) mRNA levels was analyzed. Mouse renal epithelial cells were used for in vitro experiments. After transfection and stimulation, the cells were divided into 4 groups, namely the C57BL/6 serum group (group 1), the MRL/lpr serum group (group 2), the MRL/lpr serum + siRNA-negative control group (group 3), and the MRL/lpr serum + siRNA-YAP1 group (group 4). Epithelial-mesenchymal transition (EMT) markers in each group were detected by Western blotting and immunofluorescence staining. Serum creatinine, blood urea nitrogen, and urinary protein levels were detected and assessed for their correlation with YAP1 mRNA levels by Spearman’s analysis. <b><i>Results:</i></b> Compared to C57BL/6 mice, MRL/lpr mice exhibited obvious changes in fibrosis in renal tissues. In addition, YAP1 expression was significantly higher in the renal tissues of MRL/lpr mice than in those of C57BL/6 mice, and YAP1 mRNA levels were positively correlated with those of FN. YAP1 silencing in lupus serum-stimulated cells could effectively relieve serum-induced EMT. Finally, we observed that YAP1 mRNA levels in mouse kidney tissue were significantly and positively correlated with the degree of renal function injury. <b><i>Conclusion:</i></b> YAP1 expression in the kidney tissues of LN mice was higher than that observed in normal mice, indicating that YAP1 may play an important role in the occurrence and development of LN.



2021 ◽  
Author(s):  
Atta Mohammad Dost ◽  
Mehmet Gunata ◽  
Onural Ozhan ◽  
Azibe Yildiz ◽  
Nigar Vardi ◽  
...  

Abstract Amikacin (AK) is frequently used in the treatment of gram-negative and some gram-positive infections. However, its use is limited due to nephrotoxicity due to the increase in reactive oxygen radicals. The aim of this study was to investigate the role of carvacrol (CAR) against AK-induced nephrotoxicity in rats. Thirty-two Sprague Dawley rats were randomly divided into four groups as control (Vehicle), AK (400 mg/kg), CAR + AK (80 mg/kg CAR + 400 mg/kg AK), and AK + CAR (400 mg/kg AK + 80 mg/kg CAR) groups. AK and CAR were administered via intramuscular and per-oral for 7 days, respectively. Blood and kidney tissue samples were taken at the end of the experiment. Renal function and histopathological changes were compared, and the relevant parameters of oxidative stress and inflammation were detected. Histopathological findings (necrotic changes and dilatation and inflammatory cell infiltration) significantly increased in the AK group compared to the control group. Also, the rats in the AK group lost weight significantly. It was found that CAR treatment before and after AK significantly improved nephrotoxicity histopathologically (p < 0.05). However, this improvement was not detected biochemically. These results show that CAR treatment before and after AK improves nephrotoxicity in the histopathological level.



Author(s):  
Priyanka Singh ◽  
Sanjay Kumar Bhadada ◽  
Divya Dahiya ◽  
Uma Nahar Saikia ◽  
Ashutosh Kumar Arya ◽  
...  

Abstract Purpose Glial cells missing 2 (GCM2), a zinc finger-transcription factor, is essentially required for the development of parathyroid glands. We sought to identify if the epigenetic alterations in the GCM2 transcription are involved in the pathogenesis of sporadic parathyroid adenoma. In addition, we examined the association between promoter methylation and histone modifications with disease indices. Experimental design mRNA and protein expression of GCM2 were analyzed by RT-qPCR and immunohistochemistry in 33 adenomatous and 10 control parathyroid tissues. DNA methylation and histone methylation/acetylation of GCM2 promoter were measured by bisulfite sequencing and ChIP-qPCR. Additionally, we investigated the role of epigenetic modifications on GCM2 and DNA methyltransferase 1 (DNMT1) expression in PTH-C1 cells by treating with 5-aza 2’deoxycytidine (DAC) and BRD4770 and assessed for GCM2 mRNA and DNMT1 protein levels. Results mRNA and protein expression of GCM2 were lower in sporadic adenomatous than in control parathyroid tissues. This reduction correlated with hypermethylation (P&lt;0.001) and higher H3K9me3 levels in GCM2 promoter (P&lt;0.04) in adenomas. In PTH-C1 cells, DAC treatment resulted in increased GCM2 transcription and decreased DNMT1 protein expression, while cells treated with the BRD4770 showed reduced H3K9me3 levels but a non-significant change in GCM2 transcription. Conclusion These findings suggest the concurrent association of promoter hypermethylation and higher H3K9me3 with the repression of GCM2 expression in parathyroid adenomas. Treatment with DAC restored GCM2 expression in PTH-C1 cells. Our results showed a possible epigenetic landscape in the tumorigenesis of parathyroid adenoma and also that DAC may be promising avenues of research for parathyroid adenoma therapeutics.



2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Weitao Ji ◽  
Hongyun Shi ◽  
Hailin Shen ◽  
Jing Kong ◽  
Jiayi Song ◽  
...  

Krüppel-like factor 4 (KLF4) is a key transcription factor that regulates genes involved in the proliferation or differentiation in different tissues. Apelin plays roles in cardiovascular functions, metabolic disease, and homeostatic disorder. However, the biological function of apelin in liver disease is still ongoing. In this study, we investigated the mechanism of KLF4-mediated protection against acute liver injury via the inhibition of the apelin signaling pathway. Mice were intraperitoneally injected with carbon tetrachloride (CCl4; 0.2 mL dissolved in 100 mL olive oil, 10 mL/kg) to establish an acute liver injury model. A KLF4 expression plasmid was injected through the tail vein 48 h before CCl4 treatment. In cultured LX-2 cells, pAd-KLF4 or siRNA KLF4 was overexpressed or knockdown, and the mRNA and protein levels of apelin were determined. The results showed that the apelin serum level in the CCl4-injected group was higher than that of control group, and the expression of apelin in the liver tissues was elevated while KLF4 expression was decreased in the CCl4-injected group compared to the KLF4-plasmid-injected group. HE staining revealed serious hepatocellular steatosis in the CCl4-injected mice, and KLF4 alleviated this steatosis in the mice injected with KLF4 plasmid. In vitro experiments showed that tumor necrosis factor-alpha (TNF-α) could downregulate the transcription and translation levels of apelin in LX-2 cells and also upregulate KLF4 mRNA and protein expression. RT-PCR and Western blotting showed that the overexpression of KLF4 markedly decreased basal apelin expression, but knockdown of KLF4 restored apelin expression in TNF-α-treated LX-2 cells. These in vivo and in vitro experiments suggest that KLF4 plays a key role in inhibiting hepatocellular steatosis in acute liver injury, and that its mechanism might be the inhibition of the apelin signaling pathway.



Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1642
Author(s):  
Zhi Yang ◽  
Yu Yang ◽  
Jinjin Yang ◽  
Xiaoli Wan ◽  
Haiming Yang ◽  
...  

The objective of our study was to investigate the effects of excess Methionine (Met) on the growth performance, serum homocysteine levels, apoptotic rates, and Bax and Bcl-2 protein levels in geese and to study the role of Bet (betaine) in relieving excess Met-induced hyperhomocysteinemia (HHcy). In this study, 150 healthy male 14-day-old Yangzhou geese of similar body weight were randomly distributed into three groups with five replicates per treatment and 10 geese per replicate: the control group (fed a control diet), the Met toxicity group (fed the control diet +1% Met), and the Bet detoxification group (fed the control diet +1% Met +0.2% Bet). At 28, 49, and 70 d of age, the geese in the Met toxicity group had significantly lower body weights than those in the control group (p < 0.05). The serum homocysteine levels in geese at 70 d of age in the detoxification group were significantly lower than those in the Met toxicity group (p < 0.05). Compared with the control, Met significantly increased cardiomyocyte apoptosis rates, while Bet reduced them. In conclusion, our results suggest that excess methionine reduces body weight induced by myocardial apoptosis, and Bet can be used to effectively lower plasma homocysteine levels.



2021 ◽  
Vol 12 ◽  
Author(s):  
Shasha Zhang ◽  
Ying Dong ◽  
Ruiying Qiang ◽  
Yuan Zhang ◽  
Xiaoli Zhang ◽  
...  

Striatin-interacting protein 1 (Strip1) is a core component of the striatin interacting phosphatase and kinase (STRIPAK) complex, which is involved in embryogenesis and development, circadian rhythms, type 2 diabetes, and cancer progression. However, the expression and role of Strip1 in the mammalian cochlea remains unclear. Here we studied the expression and function of Strip1 in the mouse cochlea by using Strip1 knockout mice. We first found that the mRNA and protein expression of Strip1 increases as mice age starting from postnatal day (P) 3 and reaches its highest expression level at P30 and that the expression of Strip1 can be detected by immunofluorescent staining starting from P14 only in cochlear HCs, and not in supporting cells (SCs). Next, we crossed Strip1 heterozygous knockout (Strip +/−) mice to obtain Strip1 homozygous knockout (Strip1−/−) mice for studying the role of Strip1 in cochlear HCs. However, no Strip1−/− mice were obtained and the ratio of Strip +/− to Strip1+/+ mice per litter was about 2:1, which suggested that homozygous Strip1 knockout is embryonic lethal. We measured hearing function and counted the HC number in P30 and P60 Strip +/− mice and found that they had normal hearing ability and HC numbers compared to Strip1+/+ mice. Our study suggested that Strip1 probably play important roles in HC development and maturation, which needs further study in the future.



Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2240-2240
Author(s):  
Nirav Dhanesha ◽  
Anil K. Chauhan

Abstract Background and objective: ADAMTS13 (A Disintegrin And Metalloprotease with Thrombospondin type I repeats-13) cleaves von Willebrand factor (VWF), a large multimeric protein that plays an important role in hemostasis and thrombosis. Severe deficiency or very low levels of ADAMTS13 in presence of external stimuli results in accumulation of thrombogenic ultra large VWF multimers (which are released from activated endothelium) known to trigger thrombotic microangiopathy. Activated endothelium/dysfunction is a prominent feature of diabetic nephropathy, and advanced diabetic glomerulopathy often exhibits thrombotic microangiopathy. Significantly reduced ADAMTS13 and increased plasma VWF levels have been found in diabetic patients with nephropathy. Although major site of ADAMTS13 synthesis is liver, ADAMTS13 is also expressed by podocytes in normal renal cortex. It remains unknown, however, whether VWF and ADAMTS13 imbalance plays a causal role in development of nephropathy in diabetic patients or rather is simply an associate marker of disease status, possibly secondary to endothelial function. We performed experiments in genetic models to determine whether ADAMTS13 and VWF axis contributes to diabetic nephropathy. Methods : Male, 8-10 weeks old wild-type (WT), Adamts13-/- and Vwf-/- mice were made diabetic by injecting multiple low doses of streptozotocin (60 mg/kg, i.p. for five consecutive days). Successful diabetes induction was tested after 2 weeks by measuring blood glucose. Mice having blood glucose levels above 300 mg/dL were included in the study. Controls were nondiabetic littermate mice treated with citrate buffer. The extent of renal injury was evaluated after 28 weeks of diabetes induction by measuring albuminuria and kidney to body weight ratio. Renal hypertrophy and extracellular matrix deposition was quantified by hematoxylin and immunostaining. PAI-1 mRNA and protein levels were measured by real time quantitative RT-PCR and ELISA. Results: Adamts13- /- diabetic mice exhibited significantly increased kidney to body weight ratio (P<0.05 vs. WT diabetic mice). Urine albuminuria, an index of renal injury was significantly elevated in Adamts13-/- diabetic mice (P<0.05 vs. WT diabetic mice). Increased renal injury in Adamts13-/- diabetic mice was concomitant with increased renal hypertrophy and extracellular matrix (ECM) deposition within glomeruli (P<0.05 vs. WT diabetic mice). Murine studies have shown that PAI-1 contributes to diabetic nephropathy by regulating TGF-beta and ECM deposition. A positive association exists between increased PAI-1 levels in glomeruli and microangiopathy in patients with diabetic nephropathy. We determined whether ADAMTS13 deficiency-induced microangiopathy in glomeruli increases PAI-1 levels. Adamts13-/- diabetic mice exhibited increased PAI-1 mRNA and protein levels (P<0.05 vs. WT diabetic mice). VWF remains the only known substrate of ADAMTS13 and increased plasma VWF levels have been associated with diabetic nephropathy. We determined the role of VWF in diabetic nephropathy. Vwf-/- diabetic mice exhibited significantly decreased kidney weight/body weight ratio, less urinary albuminuria, decreased kidney PAI-1 expression levels concomitant with improved kidney morphological changes (P<0.05 vs. WT diabetic mice). Conclusion : These findings provide experimental evidence for the first time that ADAMTS13/VWF axis potentially contributes to diabetic nephropathy, most likely by regulating PAI-1 levels. Disclosures No relevant conflicts of interest to declare.



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Congqing Li ◽  
Wenyan Wang ◽  
Shiying Sun ◽  
Youjiang Xu ◽  
Ziang Fang ◽  
...  

Objective. Intrauterine adhesions affect menstruation and fertility, and endometrial fibrosis is the final manifestation of IUA. MMP-9 is closely related to fibrosis. The purpose of the study was to assess the role of MMP-9 in intrauterine adhesion (IUA) in rats and patients. Methods. 40 rats and 24 women were enrolled in this study. 40 rats were randomly divided into 3 groups: IUA group ( n = 20 ), sham group ( n = 10 ), and control group ( n = 10 ). Rat IUA models were established by intrauterine mechanical and chemical injured. In this study, 12 patients of intrauterine adhesions were detected and underwent TCRA (transcervical resection of adhesion) surgery, and endometrial tissue specimens were obtained during operation. One month later, an office hysteroscopy procedure was performed, and endometrial tissue specimens were obtained during operation again (postoperative group). A group of 12 normal age-matched control individuals served as controls underwent hysteroscopy and endometrial sampling. We used immunohistochemistry to detect MMP-9 expressions in rats and human endometrial tissues and to detect MMP-9 protein levels by Western blotting. In addition, we detected mRNA expression levels with qRT-PCR. Results. The expression of MMP-9 in the IUA rats was reduced compared with that in the sham group and Ctrl group ( P < 0.05 ), and the expression of MMP-9 was also reduced in the IUA patients compared with that in the Ctrl group ( P < 0.05 ). The mRNA levels of MMP-9 in the endometrium reflected similar results ( P < 0.05 ). The MMP-9 clearly increased even in the endometrium after TCRA surgery ( P < 0.05 ). Conclusion. Our study suggests that MMP-9 may play an important role in IUA. In the future, more in-depth research should be conducted on MMP-9.



Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3468
Author(s):  
Anqi Li ◽  
Xiaotong Su ◽  
Yuan Tian ◽  
Guibing Song ◽  
Linsen Zan ◽  
...  

Actin Alpha Cardiac Muscle 1 (ACTC1) gene is a differentially expressed gene screened through the co-culture system of myoblasts-preadipocytes. In order to study the role of this gene in the process of proliferation and differentiation of bovine myoblasts and preadipocytes, the methods of the knockdown, overexpression, and ectopic expression of ACTC1 were used in this study. After ACTC1 knockdown in bovine myoblasts and inducing differentiation, the sizes and numbers of myotube formation were significantly reduced compared to the control group, and myogenic marker genes—MYOD1, MYOG, MYH3, MRF4, MYF5, CKM and MEF2A—were significantly decreased (p < 0.05, p < 0.01) at both the mRNA and protein levels of myoblasts at different differentiation stages (D0, D2, D4, D6 and D8). Conversely, ACTC1 overexpression induced the inverse result. After ectopic expression of ACTC1 in bovine preadipocytes and induced differentiation, the number and size of lipid droplets were significantly higher than those of the control group, and the expression of adipogenic marker genes—FABP4, SCD1, PPARγ and FASN—were significantly increased (p < 0.05, p < 0.01) at the mRNA and protein levels of preadipocytes at different differentiation stages. Flow cytometry results showed that both the knockdown and overexpression of ACTC1 inhibited the normal cell cycle of myoblasts; however, ectopic expression of ACTC1 in adipocytes induced no significant cell cycle changes. This study is the first to explore the role of ACTC1 in bovine myogenesis and lipogenesis and demonstrates that ACTC1 promotes the differentiation of bovine myoblasts and preadipocytes, affecting the proliferation of myoblasts.



2019 ◽  
Vol 20 (10) ◽  
pp. 2427 ◽  
Author(s):  
Maayan Waldman ◽  
Vadim Nudelman ◽  
Asher Shainberg ◽  
Romy Zemel ◽  
Ran Kornwoski ◽  
...  

Type 2 diabetes mellitus (DM2) leads to cardiomyopathy characterized by cardiomyocyte hypertrophy, followed by mitochondrial dysfunction and interstitial fibrosis, all of which are exacerbated by angiotensin II (AT). SIRT1 and its transcriptional coactivator target PGC-1α (peroxisome proliferator-activated receptor-γ coactivator), and heme oxygenase-1 (HO-1) modulates mitochondrial biogenesis and antioxidant protection. We have previously shown the beneficial effect of caloric restriction (CR) on diabetic cardiomyopathy through intracellular signaling pathways involving the SIRT1–PGC-1α axis. In the current study, we examined the role of HO-1 in diabetic cardiomyopathy in mice subjected to CR. Methods: Cardiomyopathy was induced in obese diabetic (db/db) mice by AT infusion. Mice were either fed ad libitum or subjected to CR. In an in vitro study, the reactive oxygen species (ROS) level was determined in cardiomyocytes exposed to different glucose levels (7.5–33 mM). We examined the effects of Sn(tin)-mesoporphyrin (SnMP), which is an inhibitor of HO activity, the HO-1 inducer cobalt protoporphyrin (CoPP), and the SIRT1 inhibitor (EX-527) on diabetic cardiomyopathy. Results: Diabetic mice had low levels of HO-1 and elevated levels of the oxidative marker malondialdehyde (MDA). CR attenuated left ventricular hypertrophy (LVH), increased HO-1 levels, and decreased MDA levels. SnMP abolished the protective effects of CR and caused pronounced LVH and cardiac metabolic dysfunction represented by suppressed levels of adiponectin, SIRT1, PPARγ, PGC-1α, and increased MDA. High glucose (33 mM) increased ROS in cultured cardiomyocytes, while SnMP reduced SIRT1, PGC-1α levels, and HO activity. Similarly, SIRT1 inhibition led to a reduction in PGC-1α and HO-1 levels. CoPP increased HO-1 protein levels and activity, SIRT1, and PGC-1α levels, and decreased ROS production, suggesting a positive feedback between SIRT1 and HO-1. Conclusion: These results establish a link between SIRT1, PGC-1α, and HO-1 signaling that leads to the attenuation of ROS production and diabetic cardiomyopathy. CoPP mimicked the beneficial effect of CR, while SnMP increased oxidative stress, aggravating cardiac hypertrophy. The data suggest that increasing HO-1 levels constitutes a novel therapeutic approach to protect the diabetic heart. Brief Summary: CR attenuates cardiomyopathy, and increases HO-1, SIRT activity, and PGC-1α protein levels in diabetic mice. High glucose reduces adiponectin, SIRT1, PGC1-1α, and HO-1 levels in cardiomyocytes, resulting in oxidative stress. The pharmacological activation of HO-1 activity mimics the effect of CR, while SnMP increased oxidative stress and cardiac hypertrophy. These data suggest the critical role of HO-1 in protecting the diabetic heart.



Sign in / Sign up

Export Citation Format

Share Document