scholarly journals Effect of Actin Alpha Cardiac Muscle 1 on the Proliferation and Differentiation of Bovine Myoblasts and Preadipocytes

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3468
Author(s):  
Anqi Li ◽  
Xiaotong Su ◽  
Yuan Tian ◽  
Guibing Song ◽  
Linsen Zan ◽  
...  

Actin Alpha Cardiac Muscle 1 (ACTC1) gene is a differentially expressed gene screened through the co-culture system of myoblasts-preadipocytes. In order to study the role of this gene in the process of proliferation and differentiation of bovine myoblasts and preadipocytes, the methods of the knockdown, overexpression, and ectopic expression of ACTC1 were used in this study. After ACTC1 knockdown in bovine myoblasts and inducing differentiation, the sizes and numbers of myotube formation were significantly reduced compared to the control group, and myogenic marker genes—MYOD1, MYOG, MYH3, MRF4, MYF5, CKM and MEF2A—were significantly decreased (p < 0.05, p < 0.01) at both the mRNA and protein levels of myoblasts at different differentiation stages (D0, D2, D4, D6 and D8). Conversely, ACTC1 overexpression induced the inverse result. After ectopic expression of ACTC1 in bovine preadipocytes and induced differentiation, the number and size of lipid droplets were significantly higher than those of the control group, and the expression of adipogenic marker genes—FABP4, SCD1, PPARγ and FASN—were significantly increased (p < 0.05, p < 0.01) at the mRNA and protein levels of preadipocytes at different differentiation stages. Flow cytometry results showed that both the knockdown and overexpression of ACTC1 inhibited the normal cell cycle of myoblasts; however, ectopic expression of ACTC1 in adipocytes induced no significant cell cycle changes. This study is the first to explore the role of ACTC1 in bovine myogenesis and lipogenesis and demonstrates that ACTC1 promotes the differentiation of bovine myoblasts and preadipocytes, affecting the proliferation of myoblasts.

2021 ◽  
Vol 22 (16) ◽  
pp. 8508
Author(s):  
Ainsley Mike Antao ◽  
Kamini Kaushal ◽  
Soumyadip Das ◽  
Vijai Singh ◽  
Bharathi Suresh ◽  
...  

Deubiquitinating enzymes play key roles in the precise modulation of Aurora B—an essential cell cycle regulator. The expression of Aurora B increases before the onset of mitosis and decreases during mitotic exit; an imbalance in these levels has a severe impact on the fate of the cell cycle. Dysregulation of Aurora B can lead to aberrant chromosomal segregation and accumulation of errors during mitosis, eventually resulting in cytokinesis failure. Thus, it is essential to identify the precise regulatory mechanisms that modulate Aurora B levels during the cell division cycle. Using a deubiquitinase knockout strategy, we identified USP48 as an important candidate that can regulate Aurora B protein levels during the normal cell cycle. Here, we report that USP48 interacts with and stabilizes the Aurora B protein. Furthermore, we showed that the deubiquitinating activity of USP48 helps to maintain the steady-state levels of Aurora B protein by regulating its half-life. Finally, USP48 knockout resulted in delayed progression of cell cycle due to accumulation of mitotic defects and ultimately cytokinesis failure, suggesting the role of USP48 in cell cycle regulation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoshan Su ◽  
Junjie Chen ◽  
Xiaoping Lin ◽  
Xiaoyang Chen ◽  
Zhixing Zhu ◽  
...  

Abstract Background Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Epithelial–mesenchymal transition (EMT) is an essential pathophysiological process in COPD and plays an important role in airway remodeling, fibrosis, and malignant transformation of COPD. Previous studies have indicated FERMT3 is downregulated and plays a tumor-suppressive role in lung cancer. However, the role of FERMT3 in COPD, including EMT, has not yet been investigated. Methods The present study aimed to explore the potential role of FERMT3 in COPD and its underlying molecular mechanisms. Three GEO datasets were utilized to analyse FERMT3 gene expression profiles in COPD. We then established EMT animal models and cell models through cigarette smoke (CS) or cigarette smoke extract (CSE) exposure to detect the expression of FERMT3 and EMT markers. RT-PCR, western blot, immunohistochemical, cell migration, and cell cycle were employed to investigate the potential regulatory effect of FERMT3 in CSE-induced EMT. Results Based on Gene Expression Omnibus (GEO) data set analysis, FERMT3 expression in bronchoalveolar lavage fluid was lower in COPD smokers than in non-smokers or smokers. Moreover, FERMT3 expression was significantly down-regulated in lung tissues of COPD GOLD 4 patients compared with the control group. Cigarette smoke exposure reduced the FERMT3 expression and induces EMT both in vivo and in vitro. The results showed that overexpression of FERMT3 could inhibit EMT induced by CSE in A549 cells. Furthermore, the CSE-induced cell migration and cell cycle progression were reversed by FERMT3 overexpression. Mechanistically, our study showed that overexpression of FERMT3 inhibited CSE-induced EMT through the Wnt/β-catenin signaling. Conclusions In summary, these data suggest FERMT3 regulates cigarette smoke-induced epithelial–mesenchymal transition through Wnt/β-catenin signaling. These findings indicated that FERMT3 was correlated with the development of COPD and may serve as a potential target for both COPD and lung cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ting Zhang ◽  
Mengyang Jiang ◽  
Xiaojie Yin ◽  
Peng Yao ◽  
Huiqiang Sun

AbstractOsteoimmunity plays an important role in the process of implant osseointegration. Autophagy is a conservative metabolic pathway of eukaryotic cells, but whether the interaction between autophagy and osteoimmunity plays a key role in osseointegration remains unclear. In this study, we prepared smooth titanium disks and micro-nano topography titanium disks, to study the immune microenvironment of RAW264.7 cells, and prepared the conditioned medium to study the effect of immune microenvironment on the osteogenesis and autophagy of MC3T3-E1 cells. Autophagy inhibitor 3-MA was used to inhibit autophagy to observe the change of expression of osteogenic markers. The results showed that the micro-nano topography titanium disks could stimulate RAW264.7 cells to differentiate into M2 type, forming an anti-inflammatory immune microenvironment; compared with the control group, the anti-inflammatory immune microenvironment promoted the proliferation and differentiation of osteoblasts better. The anti-inflammatory immune environment activated the autophagy level of osteoblasts, while the expression of osteogenic markers was down-regulated after inhibition of autophagy. These results indicate that anti-inflammatory immune microenvironment can promote cell proliferation and osteogenic differentiation, autophagy plays an important role in this process. This study further explains the mechanism of implant osseointegration in osteoimmune microenvironment, and provides reference for improving implant osseointegration.


2014 ◽  
Vol 38 (1) ◽  
pp. 62-70
Author(s):  
Baraa Najim Al-Okaily

This experiment was aimed to investigate the role of pomegranate seed oil (PSO) in ameliorating the deleterious effects of methionine overload on some histopathological structure of heart and aorta in adult female rabbits. Thirty-Two female rabbits divided into four groups eight animals each, and treated for 42 days daily as follows: the first groups were drenched drinking corn oil, serving as control (group C), second group (group T1) were intubated orally with methionine 100mg/kg. B.W, while the third group (groupT2) were intubated orally with methionine 100mg/kg. B.W and pomegranate seed oil (PSO) 30 mg /Kg. B.W, and the animals in group T3 were intubated orally with pomegranate seed oil 30 mg /Kg. B.W. At the end of the experiment rabbits were sacrificed. Serial sections from the heart and aorta were prepared and examined microscopically. Histological examination of heart and aorta of methionine overload treated group (T1) showed edema ,RBCs and few neutrophils infiltration ,with vacuolar degeneration of cardiac muscle cells , fragment of muscle fiber, congested blood vessels between muscle fibers. An increase in thickness of intima, erosion and mononuclear cells infiltration in sub intima of aorta were also observed. Histological sections of heart and aorta in T2 and T3 groups showed the absence of histopathological lesions in aortic tissue with moderate edema between muscle fiber of T2 group as comparing to group T1. In conclusion, the results confirm the cardioprotective role of pomegranate seed oil by ameliorating the effect of methionine overload on cardiac muscle and aorta.


2021 ◽  
Vol 15 (5) ◽  
pp. 347-358
Author(s):  
Ning Li ◽  
Shaotao Jiang ◽  
Rongdang Fu ◽  
Jin Lv ◽  
Jiyou Yao ◽  
...  

Background: Recent studies have shown that cleavage and polyadenylation-specific factor 3 (CPSF3) is a promising antitumor therapeutic target, but its potential role in hepatocellular carcinoma (HCC) has not been reported. Materials & methods: We explored the expression pattern of CPSF3 in HCC through bioinformatics analysis, quantitative polymerase chain reaction (qPCR) and western blot. The potential role of CPSF3 as a biomarker for HCC was evaluated by Kaplan–Meier analysis. Next, changes in HCC cell lines in the CPSF3 knockdown model group and the control group were assessed by Cell Counting Kit-8, clonal formation, flow cytometry and EdU staining. Western blot detected changes in protein levels of the PI3K/Akt/GSK-3β axis of two HCC cell lines in the knockdown group and the control group. Results: The results showed that the transcription and protein levels of CPSF3 were significantly higher in HCC tissues than in adjacent normal tissues (p < 0.05). The HCC cohort with increased expression of CPSF3 is associated with advanced stage and differentiation and predicts poorer prognosis (p < 0.05). CPSF3 knockdown significantly inhibited proliferation and clone formation of HepG2 and SMMC-7721 cell lines. Flow cytometry analysis showed G1–S cell cycle arrest in the CPSF3 knockdown group, and the results of EdU staining were consistent with this. Compared with the control group, p-Akt and cyclin D1 were decreased, and GSK-3β was increased in the knockdown group. Conclusion: CPSF3 may be a potential diagnostic biomarker and candidate therapeutic target for HCC.


2009 ◽  
Vol 185 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Arne Lindqvist ◽  
Verónica Rodríguez-Bravo ◽  
René H. Medema

The decision to enter mitosis is mediated by a network of proteins that regulate activation of the cyclin B–Cdk1 complex. Within this network, several positive feedback loops can amplify cyclin B–Cdk1 activation to ensure complete commitment to a mitotic state once the decision to enter mitosis has been made. However, evidence is accumulating that several components of the feedback loops are redundant for cyclin B–Cdk1 activation during normal cell division. Nonetheless, defined feedback loops become essential to promote mitotic entry when normal cell cycle progression is perturbed. Recent data has demonstrated that at least three Plk1-dependent feedback loops exist that enhance cyclin B–Cdk1 activation at different levels. In this review, we discuss the role of various feedback loops that regulate cyclin B–Cdk1 activation under different conditions, the timing of their activation, and the possible identity of the elusive trigger that controls mitotic entry in human cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yue Sun ◽  
Yuzhen Liang ◽  
Zhengming Li ◽  
Ning Xia

Liraglutide is a glucagon-like peptide-1 analogue widely used in the treatment of type 2 diabetes mellitus. However, the effects of liraglutide on osteoblast proliferation and differentiation in MC3T3-E1 cells have not been fully elucidated. In the present study, the promoting effects of liraglutide were investigated in MC3T3-E1 cells. The results indicated that cell viability was affected following the treatment of the cells with different concentrations of liraglutide (0, 10, 100, and 1000 nM) at different time periods of culture (24, 48, and 72 h). Moreover, the activity levels of alkaline phosphatase and the number of mineralized nodules in MC3T3-E1 cells were significantly increased following treatment with 100 nM liraglutide. The mRNA and protein levels of Col-1, OPG, and OCN in MC3T3-E1 cells were also markedly increased following 100 nM liraglutide treatment compared with those of the control group. The expression levels of the ERK5 signaling pathway key proteins (MEK5, p-ERK5, ERK5, and NUR77) were increased following liraglutide treatment in MC3T3-E1 cells, and the gene expression levels of the ERK5 signaling pathway were also elevated. Moreover, the ERK5 inhibitor XMD8-92 significantly decreased the expression levels of p-ERK5 and NUR77 as well as the proliferation of osteoblasts. However, these changes could be rescued by liraglutide to some extent. Therefore, these results revealed that liraglutide may promote osteoblastic differentiation and proliferation in MC3T3-E1 cells via the activation of the ERK5 signaling pathway.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1642
Author(s):  
Zhi Yang ◽  
Yu Yang ◽  
Jinjin Yang ◽  
Xiaoli Wan ◽  
Haiming Yang ◽  
...  

The objective of our study was to investigate the effects of excess Methionine (Met) on the growth performance, serum homocysteine levels, apoptotic rates, and Bax and Bcl-2 protein levels in geese and to study the role of Bet (betaine) in relieving excess Met-induced hyperhomocysteinemia (HHcy). In this study, 150 healthy male 14-day-old Yangzhou geese of similar body weight were randomly distributed into three groups with five replicates per treatment and 10 geese per replicate: the control group (fed a control diet), the Met toxicity group (fed the control diet +1% Met), and the Bet detoxification group (fed the control diet +1% Met +0.2% Bet). At 28, 49, and 70 d of age, the geese in the Met toxicity group had significantly lower body weights than those in the control group (p < 0.05). The serum homocysteine levels in geese at 70 d of age in the detoxification group were significantly lower than those in the Met toxicity group (p < 0.05). Compared with the control, Met significantly increased cardiomyocyte apoptosis rates, while Bet reduced them. In conclusion, our results suggest that excess methionine reduces body weight induced by myocardial apoptosis, and Bet can be used to effectively lower plasma homocysteine levels.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 697-697
Author(s):  
Xu Han ◽  
Jieying Zhang ◽  
Yuanliang Peng ◽  
Huiyong Chen ◽  
Xiao Chen ◽  
...  

Abstract Erythropoiesis is a process during which hematopoietic stem cell (HSCs) are first committed to erythroid progenitors, which subsequently undergo terminal erythroid differentiation to produce mature red blood cells. During terminal erythroid differentiation, proerythroblasts undergo 4-5 mitoses to sequentially generate basophilic erythroblasts, polychromatic erythroblasts and orthochromatic erythroblasts that expel their nuclei to produce enucleated reticulocytes. Terminal erythropoiesis is a tightly regulated process. The most well studied regulatory mechanisms include EPO/EPOR mediated signal transduction and transcription factors among which GATA1 plays critical role. Terminal erythroid differentiation is also tightly coordinated with cell cycle exit, which is regulated by cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors (CDKI), yet their roles in erythropoiesis remain largely undefined. Our RNA-seq of human terminal erythroid differentiation shows that of seven CDKI members, only three of them, p18INK4c, p19INK4d and p27KIP1, are abundantly expressed in erythroid cells and their expressions are significantly upregulated in late stage erythroblasts, which were further confirmed by western blotting analysis. In contrast to demonstrated roles of p18INK4c and p27KIP1 in terminal erythroid differentiation, the function of p19INK4d this process has not been studied. To explore the role of p19INK4d during human erythropoiesis, we employed a shRNA-mediated knockdown approach in CD34+ cells and found that p19INK4d knockdown delayed erythroid differentiation, inhibited cell growth, led to increased apoptosis and generation of abnormally nucleated late stage erythroblasts. Unexpectedly, p19INK4d knockdown did not affect cell cycle. Rather it led to decreased GATA1 protein levels. Importantly, the differentiation and nucleus defects were rescued by ectopic expression of GATA1. As GATA1 protein is protected by nuclear HSP70, to explore the mechanism for the decreased GATA1 protein levels, we examined the effects of p19INK4d knockdown on HSP70 and found p19INK4d knockdown led to decreased nuclear localization of HSP70 due to reduced ERK activation. Further biochemical analysis revealed that p19INK4d directly binds to Ras kinase inhibitor PEBP1 and that p19INK4d knockdown increased the expression of PEBP1 which in turn led to reduced ERK activation. These results demonstrate that p19INK4d maintains GATA1 protein levels through PEBP1-pERK-HSP70-GATA1 pathway. Our findings identify previously unknown and unexpected roles for p19INK4d in human terminal erythroid differentiation via a novel pathway. Disclosures No relevant conflicts of interest to declare.


2004 ◽  
Vol 24 (20) ◽  
pp. 9059-9069 ◽  
Author(s):  
Andrea Farina ◽  
Masakazu Hattori ◽  
Jun Qin ◽  
Yoshihiro Nakatani ◽  
Nagahiro Minato ◽  
...  

ABSTRACT Brd4 is a mammalian protein that contains a double bromodomain. It binds to chromatin and regulates cell cycle progression at multiple stages. By immunopurification and mass spectrometry, we identified a Rap GTPase-activating protein (GAP), signal-induced proliferation-associated protein 1 (SPA-1), as a factor that interacts with Brd4. SPA-1 localizes to the cytoplasm and to a lesser degree in the nucleus, while Brd4 resides in the nucleus. Bifluorescence complementation revealed that Brd4 and SPA-1 interact with each other in the nucleus of living cells. Supporting the functional importance of the interaction, Brd4 enhanced Rap GAP activity of SPA-1. Furthermore ectopic expression of SPA-1 and Brd4 redirected subcellular localization of the partner and disrupted normal cell cycle progression. These effects were, however, reversed by coexpression of the two proteins, indicating that a proper balance between Brd4 and SPA-1 in G2 is required for cell division. This work reveals a novel link between Brd4 and a GTPase-dependent mitogenic signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document