scholarly journals Diet-dependent Natriuretic Peptide Receptor C expression in adipose tissue is mediated by PPARγ via long-range distal enhancers

2021 ◽  
Author(s):  
Fubiao Shi ◽  
Zoltan Simandi ◽  
Laszlo Nagy ◽  
Sheila Collins

AbstractIn addition to their established role to maintain blood pressure and fluid volume, the cardiac natriuretic peptides (NPs) can stimulate adipocyte lipolysis and control the brown fat gene program of nonshivering thermogenesis. The NP “clearance” receptor C (NPRC) functions to clear NPs from the circulation via peptide internalization and degradation and thus is an important regulator of NP signaling and adipocyte metabolism. It is well appreciated that the Nprc gene is highly expressed in adipose tissue and is dynamically regulated with nutrition and environmental changes. However, the molecular basis for how Nprc gene expression is regulated is still poorly understood. Here we identified Peroxisome Proliferator-Activated Receptor gamma (PPARγ) as a transcriptional regulator of Nprc expression in mouse adipocytes. During 3T3-L1 adipocyte differentiation, levels of Nprc expression increase in parallel with PPARγ induction. Rosiglitazone, a classic PPARγ agonist, increases, while siRNA knockdown of PPARγ reduces, Nprc expression in 3T3-L1 adipocytes. We demonstrate that PPARγ controls Nprc gene expression in adipocytes through its long-range distal enhancers. Furthermore, the induction of Nprc expression in adipose tissue during high-fat diet feeding is associated with increased PPARγ enhancer activity. Our findings define PPARγ as a mediator of adipocyte Nprc gene expression and establish a new connection between PPARγ and the control of adipocyte NP signaling in obesity.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
M. Ebrahimi ◽  
M. A. Rajion ◽  
Y. M. Goh ◽  
A. Q. Sazili ◽  
J. T. Schonewille

This study was conducted to determine the effects of feeding oil palm frond silage based diets with added linseed oil (LO) containing highα-linolenic acid (C18:3n-3), namely, high LO (HLO), low LO (LLO), and without LO as the control group (CON) on the fatty acid (FA) composition of subcutaneous adipose tissue and the gene expression of peroxisome proliferator-activated receptor (PPAR)α, PPAR-γ, and stearoyl-CoA desaturase (SCD) in Boer goats. The proportion of C18:3n-3 in subcutaneous adipose tissue was increased (P<0.01) by increasing the LO in the diet, suggesting that the FA from HLO might have escaped ruminal biohydrogenation. Animals fed HLO diets had lower proportions of C18:1 trans-11, C18:2n-6, CLA cis-9 trans-11, and C20:4n-6 and higher proportions of C18:3n-3, C22:5n-3, and C22:6n-3 in the subcutaneous adipose tissue than animals fed the CON diets, resulting in a decreased n-6:n-3 fatty acid ratio (FAR) in the tissue. In addition, feeding the HLO diet upregulated the expression of PPAR-γ(P<0.05) but downregulated the expression of SCD (P<0.05) in the adipose tissue. The results of the present study show that LO can be safely incorporated in the diets of goats to enrich goat meat with potential health beneficial FA (i.e., n-3 FA).


2020 ◽  
Author(s):  
Supanon Tunim ◽  
Yupin Phasuk ◽  
Samuel E. Aggrey ◽  
Monchai Duangjinda

Abstract Background: Crossbreeding using exotic breeds is usually employed to improve the growth characteristics of indigenous chickens. This mating not only provides growth but affect adversely to fat deposition as well. We studied the growth, abdominal, subcutaneous and intramuscular fat and mRNA expression of peroxisome proliferator-activated receptor (PPAR) α and PPARγ in adipose and muscle tissues of four chicken breeds [Chee breed (CH) (100% Thai native chicken), Kaimook e-san1 (KM1; 50% CH background), Kaimook e-san2 (KM2; 25% CH background), and broiler (BR)]. This study was aim to study role of PPARs on fat deposition in native crossbred chicken.Results: The BR chickens had higher abdominal fat than other breeds (P<0.05) and the KM2 had an abdominal fat percentage higher than KM1 and CH respectively (P<0.05). The intramuscular fat (IMF) of BR was greater than KM1 and CH (P<0.05). In adipose tissue, PPARα transcription expression was different among the chicken breeds. However, there were breed differences in PPARγ gene expression. Study of abdominal fat PPARγ gene expression showed the BR breed, KM1, and KM2 breed significantly greater (P<0.05) than CH. In 8 to 12 weeks of age, the result shows that the PPARγ expression of the CH breed is less than (P<0.05) KM2. The result of PPARs expression in muscle tissue was similar result in adipose tissue.Conclusion: Crossbreeding improved the growth of the Thai native breed, there was also a corresponding increase in carcass fatness. However, there appears to be a relationship between PPARγ expression and fat deposition traits. therefore, PPARγ activity plays a key role in lipid accumulation by up-regulation.


Endocrinology ◽  
2008 ◽  
Vol 149 (9) ◽  
pp. 4647-4657 ◽  
Author(s):  
Vladimir T. Todorov ◽  
Michael Desch ◽  
Thomas Schubert ◽  
Armin Kurtz

We recently reported that human renin gene transcription is stimulated by the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-γ in the renin-producing cell line Calu-6. The effect of PPARγ was mapped to two sequences in the renin promoter: a direct repeat hormone response element (HRE), which is related to the classical PPAR response element (PPRE) and a nonconsensus palindromic element with a 3-bp spacer (Pal3). We now find that PPARγ binds to the renin HRE. Neither the human renin HRE nor the consensus PPRE was sufficient to attain the maximal stimulation of renin promoter activity by the PPARγ agonist rosiglitazone. In contrast, the human renin Pal3 element mediates both the full PPARγ-dependent activation of transcription and the PPARγ-driven basal renin gene transcription. The human renin Pal3 sequence was found to selectively bind PPARγ and the retinoid X receptor-α from Calu-6 nuclear extracts. This is in contrast to the consensus PPRE, which can bind other nuclear proteins. PPARγ knockdown paradoxically did not attenuate the stimulation of the endogenous renin gene expression by rosiglitazone. Similarly, a deficiency of PPARγ did not attenuate the activation of the minimal human renin promoter, which contains the endogenous Pal3 motif. However, when the human renin Pal3 site was replaced by the consensus PPRE sequence, PPARγ knockdown abrogated the effect of rosiglitazone on renin promoter activity. Thus, the human renin Pal3 site appears to be critical for the PPARγ-dependent regulation of gene expression by mediating maximal transcription activation, particularly at the low cellular level of PPARγ.


2020 ◽  
Author(s):  
Rafael Ferraz-Bannitz ◽  
Caroline Rossi Welendorf ◽  
Priscila Oliveira Coelho ◽  
Wilson Salgado ◽  
Carla Barbosa Nonino ◽  
...  

Abstract Background Bariatric surgery, especially Roux-en-Y gastric bypass (RYGB) is the most effective and durable treatment option for population with severe obesity. The mechanisms involving adipose tissue may be important to explain the effects of surgery. Methods We aimed to identify the genetic signatures of adipose tissue in patients undergoing RYGB. We evaluated 13 obese, non-diabetic patients (mean age 37 years, 100% women, Body mass index (BMI) 42.2 kg/m2) one day before surgery, 3 and 6 months (M) after RYGB. Results Analysis of gene expression in adipose tissue collected at surgery compared with samples collected at 3M and 6M Post-RYGB showed that interleukins (Interleukin 6, Tumor necrosis factor-α (TNF-α), and Monocyte chemoattractant protein-1(MCP1)) and endoplasmic reticulum stress (ERS) genes (Eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3) and Calreticulin (CALR)) decreased during the follow-up (P ≤ 0.01 for all). Otherwise, genes involved in energy homeostasis (Adiponectin and AMP-activated protein kinase (AMPK)), cellular response to oxidative stress (Sirtuin 1, Sirtuin 3, and Nuclear factor erythroid 2-related factor 2 (NRF2)), mitochondrial biogenesis (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)) and amino acids metabolism (General control nonderepressible 2 (GCN2)) increased from baseline to all other time points evaluated (P ≤ 0.01 for all). Also, expression of Peroxisome proliferator activated receptor gamma (PPARϒ) (adipogenesis regulation) was significantly decreased after RYGB (P < 0.05) We also observed a strong positive correlation between PGC1α, SIRT1 and AMPK with BMI at 3M (P ≤ 0.01 for all) and ADIPOQ and SIRT1 with BMI at 6M (P ≤ 0.01 for all). Conclusions Our findings demonstrate that weight loss is associated with amelioration of inflammation and ERS and increased protection against oxidative stress in adipose tissue. These observations are strongly correlated with a decrease in BMI and essential genes that control cellular energy homeostasis, suggesting an adaptive process on a gene expression level during the caloric restriction and weight loss period after RYGB.


Endocrinology ◽  
2009 ◽  
Vol 150 (9) ◽  
pp. 4287-4294 ◽  
Author(s):  
B. S. Muhlhausler ◽  
J. L. Morrison ◽  
I. C. McMillen

Abstract Exposure to maternal overnutrition increases the expression of peroxisome proliferator-activated receptor-γ (PPARγ) in adipose tissue before birth, and it has been proposed that the precocial activation of PPARγ target genes may lead to increased fat deposition in postnatal life. In this study, we determined the effect of intrafetal administration of a PPARγ agonist, rosiglitazone, on PPARγ target gene expression in fetal adipose tissue as well indirect actions of rosiglitazone on fetal liver and skeletal muscle. Osmotic pumps containing rosiglitazone (n = 7) or vehicle (15% ethanol, n = 7) were implanted into fetuses at 123–126 d gestation (term = 150 ± 3 d gestation). At 137–141 d gestation, tissues were collected and mRNA expression of PPARγ, lipoprotein lipase (LPL), adiponectin, and glycerol-3-phosphate dehydrogenase (G3PDH) in adipose tissue, PPARα and PPARγ-coactivator 1α (PGC1α) in liver and muscle and phosphoenolpyruvate carboxykinase (PEPCK) in liver determined by quantitative real-time RT-PCR. Plasma insulin concentrations were lower in rosiglitazone-treated fetuses (P &lt; 0.02). Rosiglitazone treatment resulted in increased expression of LPL and adiponectin mRNA (P &lt; 0.01) in fetal adipose tissue. The expression of PPARα mRNA in liver (P &lt; 0.05) and PGC1α mRNA (P &lt; 0.02) in skeletal muscle were also increased by rosiglitazone treatment. Rosiglitazone treatment increased expression of PPARγ target genes within fetal adipose tissue and also had direct or indirect actions on the fetal liver and muscle. The effects of activating PPARγ in fetal adipose tissue mimic those induced by prenatal overnutrition, and it is therefore possible that activation of PPARγ may be the initiating mechanism in the pathway from prenatal overnutrition to postnatal obesity.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Rafael Ferraz-Bannitz ◽  
Caroline Rossi Welendorf ◽  
Priscila Oliveira Coelho ◽  
Wilson Salgado ◽  
Carla Barbosa Nonino ◽  
...  

Abstract Background Bariatric surgery, especially Roux-en-Y gastric bypass (RYGB), is the most effective and durable treatment option for severe obesity. The mechanisms involving adipose tissue may be important to explain the effects of surgery. Methods We aimed to identify the genetic signatures of adipose tissue in patients undergoing RYGB. We evaluated 13 obese, non-diabetic patients (mean age 37 years, 100% women, Body mass index (BMI) 42.2 kg/m2) one day before surgery, 3 and 6 months (M) after RYGB. Results Analysis of gene expression in adipose tissue collected at surgery compared with samples collected at 3 M and 6 M Post-RYGB showed that interleukins [Interleukin 6, Tumor necrosis factor-α (TNF-α), and Monocyte chemoattractant protein-1(MCP1)] and endoplasmic reticulum stress (ERS) genes [Eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3) and Calreticulin (CALR)] decreased during the follow-up (P ≤ 0.01 for all). Otherwise, genes involved in energy homeostasis [Adiponectin and AMP-activated protein kinase (AMPK)], cellular response to oxidative stress [Sirtuin 1, Sirtuin 3, and Nuclear factor erythroid 2-related factor 2 (NRF2)], mitochondrial biogenesis [Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)] and amino acids metabolism [General control nonderepressible 2 (GCN2)] increased from baseline to all other time points evaluated (P ≤ 0.01 for all). Also, expression of Peroxisome proliferator-activated receptor gamma (PPARϒ) (adipogenesis regulation) was significantly decreased after RYGB (P < 0.05). Additionally, we observed that PGC1α, SIRT1 and AMPK strongly correlated to BMI at 3 M (P ≤ 0.01 for all), as well as ADIPOQ and SIRT1 to BMI at 6 M (P ≤ 0.01 for all). Conclusions Our findings demonstrate that weight loss is associated with amelioration of inflammation and ERS and increased protection against oxidative stress in adipose tissue. These observations are strongly correlated with a decrease in BMI and essential genes that control cellular energy homeostasis, suggesting an adaptive process on a gene expression level during the caloric restriction and weight loss period after RYGB. Trial registration CAAE: 73,585,317.0.0000.5440


Endocrinology ◽  
2001 ◽  
Vol 142 (3) ◽  
pp. 1269-1277 ◽  
Author(s):  
James M. Way ◽  
W. Wallace Harrington ◽  
Kathleen K. Brown ◽  
William K. Gottschalk ◽  
Scott S. Sundseth ◽  
...  

Abstract Peroxisome proliferator-activated receptor γ (PPARγ) agonists, including the glitazone class of drugs, are insulin sensitizers that reduce glucose and lipid levels in patients with type 2 diabetes mellitus. To more fully understand the molecular mechanisms underlying their therapeutic actions, we have characterized the effects of the potent, tyrosine-based PPARγ ligand GW1929 on serum glucose and lipid parameters and gene expression in Zucker diabetic fatty rats. In time-course studies, GW1929 treatment decreased circulating FFA levels before reducing glucose and triglyceride levels. We used a comprehensive and unbiased messenger RNA profiling technique to identify genes regulated either directly or indirectly by PPARγ in epididymal white adipose tissue, interscapular brown adipose tissue, liver, and soleus skeletal muscle. PPARγ activation stimulated the expression of a large number of genes involved in lipogenesis and fatty acid metabolism in both white adipose tissue and brown adipose tissue. In muscle, PPARγ agonist treatment decreased the expression of pyruvate dehydrogenase kinase 4, which represses oxidative glucose metabolism, and also decreased the expression of genes involved in fatty acid transport and oxidation. These changes suggest a molecular basis for PPARγ-mediated increases in glucose utilization in muscle. In liver, PPARγ activation coordinately decreased the expression of genes involved in gluconeogenesis. We conclude from these studies that the antidiabetic actions of PPARγ agonists are probably the consequence of 1) their effects on FFA levels, and 2), their coordinate effects on gene expression in multiple insulin-sensitive tissues.


Sign in / Sign up

Export Citation Format

Share Document