scholarly journals Increasing Fat Deposition via Upregulates the Transcription of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Native Crossbred Chicken

2020 ◽  
Author(s):  
Supanon Tunim ◽  
Yupin Phasuk ◽  
Samuel E. Aggrey ◽  
Monchai Duangjinda

Abstract Background: Crossbreeding using exotic breeds is usually employed to improve the growth characteristics of indigenous chickens. This mating not only provides growth but affect adversely to fat deposition as well. We studied the growth, abdominal, subcutaneous and intramuscular fat and mRNA expression of peroxisome proliferator-activated receptor (PPAR) α and PPARγ in adipose and muscle tissues of four chicken breeds [Chee breed (CH) (100% Thai native chicken), Kaimook e-san1 (KM1; 50% CH background), Kaimook e-san2 (KM2; 25% CH background), and broiler (BR)]. This study was aim to study role of PPARs on fat deposition in native crossbred chicken.Results: The BR chickens had higher abdominal fat than other breeds (P<0.05) and the KM2 had an abdominal fat percentage higher than KM1 and CH respectively (P<0.05). The intramuscular fat (IMF) of BR was greater than KM1 and CH (P<0.05). In adipose tissue, PPARα transcription expression was different among the chicken breeds. However, there were breed differences in PPARγ gene expression. Study of abdominal fat PPARγ gene expression showed the BR breed, KM1, and KM2 breed significantly greater (P<0.05) than CH. In 8 to 12 weeks of age, the result shows that the PPARγ expression of the CH breed is less than (P<0.05) KM2. The result of PPARs expression in muscle tissue was similar result in adipose tissue.Conclusion: Crossbreeding improved the growth of the Thai native breed, there was also a corresponding increase in carcass fatness. However, there appears to be a relationship between PPARγ expression and fat deposition traits. therefore, PPARγ activity plays a key role in lipid accumulation by up-regulation.

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Supanon Tunim ◽  
Yupin Phasuk ◽  
Samuel E. Aggrey ◽  
Monchai Duangjinda

This study aimed to study the role of PPARs on fat deposition in native crossbred chicken. We studied the growth, abdominal, subcutaneous, and intramuscular fat, and mRNA expression of PPARA and PPARG in adipose and muscle tissues of four chicken breeds (CH breed (100% Thai native chicken), KM1 (50% CH background), KM2 (25% CH background), and broiler (BR)). The result shows that the BR chickens had higher abdominal fat than other breeds (p < 0.05) and the KM2 had an abdominal fat percentage higher than KM1 and CH respectively (p < 0.05). The intramuscular fat of BR was greater than KM1 and CH (p < 0.05). In adipose tissue, PPARA expression was different among the chicken breeds. However, there were breed differences in PPARG expression. Study of abdominal fat PPARG expression showed the BR breed, KM1, and KM2 breed significantly greater (p < 0.05) than CH. In 8 to 12 weeks of age, the PPARG expression of the CH breed is less than (p < 0.05) KM2. Crossbreeding improved the growth of the Thai native breed, there was also a corresponding increase in carcass fatness. However, there appears to be a relationship between PPARG expression and fat deposition traits. therefore, PPARG activity hypothesized to plays a key role in lipid accumulation by up-regulation.


2015 ◽  
Vol 36 (6) ◽  
pp. 2466-2479 ◽  
Author(s):  
XiaoLe Xu ◽  
Mengzi He ◽  
Tingting Liu ◽  
Yi Zeng ◽  
Wei Zhang

Background/Aims: salusin-ß is considered to be a potential pro-atherosclerotic factor. Regulation and function of vascular smooth muscle cells (VSMCs) are important in the progression of atherosclerosis. Peroxisome proliferator-activated receptor gamma (PPARγ) exerts a vascular protective role beyond its metabolic effects. Salusin-ß has direct effects on VSMCs. The aim of the present study was to assess the effect of salusin-ß on PPARγ gene expression in primary cultured rat VSMCs. Methods: Western blotting analysis, real-time PCR and transient transfection approach were used to determine expression of target proteins. Specific protein knockdown was performed with siRNA transfection. Cell proliferation was determined by 5-bromo-2'-deoxyuridine incorporation. The levels of inflammation indicators interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a) were determined using enzyme-linked immunosorbent assay. Results: Salusin-ß negatively regulated PPARγ gene expression at protein, mRNA and gene promoter level in VSMCs. The inhibitory effect of salusin-ß on PPARγ gene expression contributed to salusin-ß-induced VSMCs proliferation and inflammation in vitro. IγBa-NF-γB activation, but not NF-γB p50 or p65, mediated the salusin-ß-induced inhibition of PPARγ gene expression. Salusin-ß induced nuclear translocation of histone deacetylase 3 (HDAC3). HDAC3 siRNA prevented salusin-ß-induced PPARγ reduction. Nuclear translocation of HDAC3 in response to salusin-ß was significantly reversed by an IγBa inhibitor BAY 11-7085. Furthermore, IγBa-HDAC3 complex was present in the cytosol of VSMCs but interrupted after salusin-ß treatment. Conclusion: IγBa-HDAC3 pathway may contribute to salusin-ß-induced inhibition of PPARγ gene expression in VSMCs.


2021 ◽  
Author(s):  
Fubiao Shi ◽  
Zoltan Simandi ◽  
Laszlo Nagy ◽  
Sheila Collins

AbstractIn addition to their established role to maintain blood pressure and fluid volume, the cardiac natriuretic peptides (NPs) can stimulate adipocyte lipolysis and control the brown fat gene program of nonshivering thermogenesis. The NP “clearance” receptor C (NPRC) functions to clear NPs from the circulation via peptide internalization and degradation and thus is an important regulator of NP signaling and adipocyte metabolism. It is well appreciated that the Nprc gene is highly expressed in adipose tissue and is dynamically regulated with nutrition and environmental changes. However, the molecular basis for how Nprc gene expression is regulated is still poorly understood. Here we identified Peroxisome Proliferator-Activated Receptor gamma (PPARγ) as a transcriptional regulator of Nprc expression in mouse adipocytes. During 3T3-L1 adipocyte differentiation, levels of Nprc expression increase in parallel with PPARγ induction. Rosiglitazone, a classic PPARγ agonist, increases, while siRNA knockdown of PPARγ reduces, Nprc expression in 3T3-L1 adipocytes. We demonstrate that PPARγ controls Nprc gene expression in adipocytes through its long-range distal enhancers. Furthermore, the induction of Nprc expression in adipose tissue during high-fat diet feeding is associated with increased PPARγ enhancer activity. Our findings define PPARγ as a mediator of adipocyte Nprc gene expression and establish a new connection between PPARγ and the control of adipocyte NP signaling in obesity.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
M. Ebrahimi ◽  
M. A. Rajion ◽  
Y. M. Goh ◽  
A. Q. Sazili ◽  
J. T. Schonewille

This study was conducted to determine the effects of feeding oil palm frond silage based diets with added linseed oil (LO) containing highα-linolenic acid (C18:3n-3), namely, high LO (HLO), low LO (LLO), and without LO as the control group (CON) on the fatty acid (FA) composition of subcutaneous adipose tissue and the gene expression of peroxisome proliferator-activated receptor (PPAR)α, PPAR-γ, and stearoyl-CoA desaturase (SCD) in Boer goats. The proportion of C18:3n-3 in subcutaneous adipose tissue was increased (P<0.01) by increasing the LO in the diet, suggesting that the FA from HLO might have escaped ruminal biohydrogenation. Animals fed HLO diets had lower proportions of C18:1 trans-11, C18:2n-6, CLA cis-9 trans-11, and C20:4n-6 and higher proportions of C18:3n-3, C22:5n-3, and C22:6n-3 in the subcutaneous adipose tissue than animals fed the CON diets, resulting in a decreased n-6:n-3 fatty acid ratio (FAR) in the tissue. In addition, feeding the HLO diet upregulated the expression of PPAR-γ(P<0.05) but downregulated the expression of SCD (P<0.05) in the adipose tissue. The results of the present study show that LO can be safely incorporated in the diets of goats to enrich goat meat with potential health beneficial FA (i.e., n-3 FA).


2003 ◽  
Vol 376 (3) ◽  
pp. 607-613 ◽  
Author(s):  
Marthe MOLDES ◽  
Ying ZUO ◽  
Ron F. MORRISON ◽  
David SILVA ◽  
Bae-Hang PARK ◽  
...  

The Wnt/β-catenin signalling pathway appears to operate to maintain the undifferentiated state of preadipocytes by inhibiting adipogenic gene expression. To define the mechanisms regulating suppression of Wnt/β-catenin signalling, we analysed the β-catenin expression in response to activation of transcription factors that regulate adipogenesis. The results show an extensive down-regulation of nuclear β-catenin that occurs during the first few days of differentiation of 3T3-L1 preadipocytes and coincides with the induction of the adipogenic transcription factors, C/EBPβ (CCAAT-enhancer-binding protein) and PPARγ (peroxisome-proliferator-activated receptor). To assess the role of each of these factors in this process, we conditionally overexpressed C/EBPβ in Swiss mouse fibroblasts using the TET-off system. Abundant expression of C/EBPβ alone had minimal effect on β-catenin expression, whereas expression of C/EBPβ, in the presence of dexamethasone, induced PPARγ expression and caused a measurable decrease in β-catenin. In addition, exposure of cells expressing both C/EBPβ and PPARγ to a potent PPARγ ligand resulted in an even greater decrease in β-catenin by mechanisms that involve the proteasome. Our studies also suggest a reciprocal relationship between PPARγ activity and β-catenin expression, since ectopic production of Wnt-1 in preadipocytes blocked the induction of PPARγ gene expression. Moreover, by suppressing β-catenin expression, ectopic expression of PPARγ in Wnt-1-expressing preadipocytes rescued the block in adipogenesis after their exposure to the PPARγ ligand, troglitazone.


2020 ◽  
Author(s):  
Rafael Ferraz-Bannitz ◽  
Caroline Rossi Welendorf ◽  
Priscila Oliveira Coelho ◽  
Wilson Salgado ◽  
Carla Barbosa Nonino ◽  
...  

Abstract Background Bariatric surgery, especially Roux-en-Y gastric bypass (RYGB) is the most effective and durable treatment option for population with severe obesity. The mechanisms involving adipose tissue may be important to explain the effects of surgery. Methods We aimed to identify the genetic signatures of adipose tissue in patients undergoing RYGB. We evaluated 13 obese, non-diabetic patients (mean age 37 years, 100% women, Body mass index (BMI) 42.2 kg/m2) one day before surgery, 3 and 6 months (M) after RYGB. Results Analysis of gene expression in adipose tissue collected at surgery compared with samples collected at 3M and 6M Post-RYGB showed that interleukins (Interleukin 6, Tumor necrosis factor-α (TNF-α), and Monocyte chemoattractant protein-1(MCP1)) and endoplasmic reticulum stress (ERS) genes (Eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3) and Calreticulin (CALR)) decreased during the follow-up (P ≤ 0.01 for all). Otherwise, genes involved in energy homeostasis (Adiponectin and AMP-activated protein kinase (AMPK)), cellular response to oxidative stress (Sirtuin 1, Sirtuin 3, and Nuclear factor erythroid 2-related factor 2 (NRF2)), mitochondrial biogenesis (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)) and amino acids metabolism (General control nonderepressible 2 (GCN2)) increased from baseline to all other time points evaluated (P ≤ 0.01 for all). Also, expression of Peroxisome proliferator activated receptor gamma (PPARϒ) (adipogenesis regulation) was significantly decreased after RYGB (P < 0.05) We also observed a strong positive correlation between PGC1α, SIRT1 and AMPK with BMI at 3M (P ≤ 0.01 for all) and ADIPOQ and SIRT1 with BMI at 6M (P ≤ 0.01 for all). Conclusions Our findings demonstrate that weight loss is associated with amelioration of inflammation and ERS and increased protection against oxidative stress in adipose tissue. These observations are strongly correlated with a decrease in BMI and essential genes that control cellular energy homeostasis, suggesting an adaptive process on a gene expression level during the caloric restriction and weight loss period after RYGB.


Sign in / Sign up

Export Citation Format

Share Document