scholarly journals Proteasome autophagy is specifically regulated and requires factors dispensible for general autophagy

2021 ◽  
Author(s):  
Kenrick A. Waite ◽  
Alicia Burris ◽  
Gabrielle Vontz ◽  
Angelica Lang ◽  
Jeroen Roelofs

ABSTRACTChanging physiological conditions can increase the need for protein degradative capacity in eukaryotic cells. Both the ubiquitin-proteasome system and autophagy contribute to protein degradation. However, proteasomes are also an autophagy substrate. Thus, these processes must be differentially regulated depending on the physiological conditions presented. The signals and molecular mechanisms that govern proteasome autophagy are only partly elucidated. Our data indicate that chemical inhibition of TORC1 with rapamycin induces a bi-phasic response where proteasome levels are upregulated followed by an autophagy-dependent reduction. Surprisingly, several conditions that result in inhibited TORC1 exclusively induce proteasome autophagy (i.e. without any proteasome upregulation), suggesting a convergence of signals upstream of proteasome autophagy under different physiological conditions. Indeed, several conditions that activate general autophagy did not induce proteasome autophagy further distinguishing between proteasome autophagy and general autophagy. Consistent with this, we found that Atg11, the receptor for selective autophagy, and the map kinases Mpk1, Mkk1, and Mkk2, all play a role in autophagy of proteasomes, while they are dispensible for general autophagy. In all, our data provide new insights into the molecular regulation of proteasome autophagy by demonstrating that these complexes are specifically regulated under different autophagy inducing conditions.

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2219 ◽  
Author(s):  
Tong Su ◽  
Mingyue Yang ◽  
Pingping Wang ◽  
Yanxiu Zhao ◽  
Changle Ma

All eukaryotes rely on the ubiquitin-proteasome system (UPS) and autophagy to control the abundance of key regulatory proteins and maintain a healthy intracellular environment. In the UPS, damaged or superfluous proteins are ubiquitinated and degraded in the proteasome, mediated by three types of ubiquitin enzymes: E1s (ubiquitin activating enzymes), E2s (ubiquitin conjugating enzymes), and E3s (ubiquitin protein ligases). Conversely, in autophagy, a vesicular autophagosome is formed that transfers damaged proteins and organelles to the vacuole, mediated by a series of ATGs (autophagy related genes). Despite the use of two completely different componential systems, the UPS and autophagy are closely interconnected and mutually regulated. During autophagy, ATG8 proteins, which are autophagosome markers, decorate the autophagosome membrane similarly to ubiquitination of damaged proteins. Ubiquitin is also involved in many selective autophagy processes and is thus a common factor of the UPS and autophagy. Additionally, the components of the UPS, such as the 26S proteasome, can be degraded via autophagy, and conversely, ATGs can be degraded by the UPS, indicating cross regulation between the two pathways. The UPS and autophagy cooperate and jointly regulate homeostasis of cellular components during plant development and stress response.


2008 ◽  
Vol 363 (1500) ◽  
pp. 2215-2227 ◽  
Author(s):  
Yoshikuni Mizuno ◽  
Nobutaka Hattori ◽  
Shin-ichiro Kubo ◽  
Shigeto Sato ◽  
Kenya Nishioka ◽  
...  

Recent progresses in the pathogenesis of sporadic Parkinson's disease (PD) and genetics of familial PD are reviewed. There are common molecular events between sporadic and familial PD, particularly between sporadic PD and PARK1 -linked PD due to α - synuclein ( SNCA ) mutations. In sporadic form, interaction of genetic predisposition and environmental factors is probably a primary event inducing mitochondrial dysfunction and oxidative damage resulting in oligomer and aggregate formations of α-synuclein. In PARK1 -linked PD, mutant α-synuclein proteins initiate the disease process as they have increased tendency for self-aggregation. As highly phosphorylated aggregated proteins are deposited in nigral neurons in PD, dysfunctions of proteolytic systems, i.e. the ubiquitin–proteasome system and autophagy–lysosomal pathway, seem to be contributing to the final neurodegenerative process. Studies on the molecular mechanisms of nigral neuronal death in familial forms of PD will contribute further on the understanding of the pathogenesis of sporadic PD.


2016 ◽  
Vol 311 (3) ◽  
pp. C392-C403 ◽  
Author(s):  
Philippe A. Bilodeau ◽  
Erin S. Coyne ◽  
Simon S. Wing

Muscle atrophy complicates many diseases as well as aging, and its presence predicts both decreased quality of life and survival. Much work has been conducted to define the molecular mechanisms involved in maintaining protein homeostasis in muscle. To date, the ubiquitin proteasome system (UPS) has been shown to play an important role in mediating muscle wasting. In this review, we have collated the enzymes in the UPS whose roles in muscle wasting have been confirmed through loss-of-function studies. We have integrated information on their mechanisms of action to create a model of how they work together to produce muscle atrophy. These enzymes are involved in promoting myofibrillar disassembly and degradation, activation of autophagy, inhibition of myogenesis as well as in modulating the signaling pathways that control these processes. Many anabolic and catabolic signaling pathways are involved in regulating these UPS genes, but none appear to coordinately regulate a large number of these genes. A number of catabolic signaling pathways appear to instead function by inhibition of the insulin/IGF-I/protein kinase B anabolic pathway. This pathway is a critical determinant of muscle mass, since it can suppress key ubiquitin ligases and autophagy, activate protein synthesis, and promote myogenesis through its downstream mediators such as forkhead box O, mammalian target of rapamycin, and GSK3β, respectively. Although much progress has been made, a more complete inventory of the UPS genes involved in mediating muscle atrophy, their mechanisms of action, and their regulation will be useful for identifying novel therapeutic approaches to this important clinical problem.


Author(s):  
Xianquan Zhan ◽  
Miaolong Lu

Ubiquitination is an important post-translational modification. Abnormal ubiquitination is extensively associated with cancers. Lung squamous cell carcinoma (LUSC) is the most common pathological type of lung cancer, with unclear molecular mechanism and the poor overall prognosis of LUSC patient. To uncover the existence and potential roles of ubiquitination in LUSC, label-free quantitative ubiquitomics was performed in human LUSC vs. control tissues. In total, 627 ubiquitinated proteins (UPs) with 1209 ubiquitination sites were identified, including 1133 (93.7%) sites with quantitative information and 76 (6.3%) sites with qualitative information. KEGG pathway enrichment analysis found that UPs were significantly enriched in ubiquitin-mediated proteolysis pathway (hsa04120) and proteasome complex (hsa03050). Further analysis of 400 differentially ubiquitinated proteins (DUPs) revealed that 11 subunits of the proteasome complex were differentially ubiquitinated. These findings clearly demonstrated that ubiquitination was widely present in the ubiquitin-proteasome pathway in LUSCs. At the same time, abnormal ubiquitination might affect the function of the proteasome to promote tumorigenesis and development. This book chapter discussed the status of protein ubiquitination in the ubiquitin-proteasome system (UPS) in human LUSC tissues, which offered the scientific data to elucidate the specific molecular mechanisms of abnormal ubiquitination during canceration and the development of anti-tumor drugs targeting UPS.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A438-A438
Author(s):  
Ersin Akarsu ◽  
Can Demirel ◽  
Sibel Oguzkan Balci ◽  
Zeynel A Sayiner ◽  
İbrahim Yilmaz ◽  
...  

Abstract Purpose: The aim of this study is; To examine the destruction of insulin receptor substrate-1 (IRS-1) molecule, which is one of the mechanisms that cause insulin resistance in diabetes and obesity, and its effect to reduce this destruction. For this purpose, the effects of exercise, metformin, exenatide and pioglitazone treatments on IRS-1 ubiquitination in pancreas, muscle and adipose tissue were investigated in an obese and diabetic animal model. Method: Obese rat model was used in this study. This model is characterised by obesity, diabetes and insulin resistance. This study investigated the molecular mechanisms of IRS-1 breakdown in diabetes. IRS1, SOCS1, SOC3 expressions were evaluated in the liver, muscle and adipose tissue of this model. At the same time, immunohistochemical analyses were performed in terms of IRS1, SOCS1 and SOCS3 in the same tissues. Results: Gene expression and Immunohistochemical analysis results were evaluated, the increase in IRS1 was noticeable in rats treated with exenatide, especially in the liver tissue despite the greater decrease in SOCS1 (P> 0.05). It was determined that other drugs in this study and used in the treatment of diabetes may also affect this mechanism to different degrees. Conclusion: Our findings showed that some drugs used in the treatment of diabetes may alter the SOCS effect and / or proteasomal degradation of the IRS-1 protein. This effect was particularly pronounced in liver tissue. However, more comprehensive studies are required to show the contribution of ubiquitination in the destruction of IRS-1 and which drugs are effective on this mechanism. Acknowledgement: This study was supported by the Scientific And Tecnological Research Council Of Turkey (TÜBİTAK) Project No: 217S089


2020 ◽  
Author(s):  
Christopher E. Bragança ◽  
Daniel A. Kraut

ABSTRACTThe Ubiquitin-proteasome system (UPS) is the canonical pathway for protein degradation in eukaryotic cells. Green fluorescent protein (GFP) is frequently used as a reporter in proteasomal degradation assays. However, there are multiple variants of GFP in use, and these variants have different stabilities. We previously found that the proteasome’s ability to unfold and degrade substrates is enhanced by polyubiquitin chains on the substrate, and that proteasomal ubiquitin receptors mediate this activation. Herein we investigate how the fate of GFP variants of differing stabilities is determined by the mode of targeting to the proteasome. We compared two targeting systems: linear Ub4 degrons and the UBL domain from yeast Rad23, both of which are commonly used in degradation experiments. Surprisingly, the UBL degron allows for degradation of the most stable sGFP-containing substrates, while the Ub4 degron does not. Destabilizing the GFP by circular permutation allows degradation with either targeting signal, indicating that domain stability and mode of targeting combine to determine substrate fate. Finally, we show that the ubiquitin receptor Rpn13 is primarily responsible for the enhanced ability of the proteasome to degrade stable UBL-tagged substrates.


2019 ◽  
Author(s):  
Mary D. Cundiff ◽  
Christina M. Hurley ◽  
Jeremy D. Wong ◽  
Aarti Bashyal ◽  
Jake Rosenberg ◽  
...  

ABSTRACTThe ubiquitin-proteasome system (UPS) is responsible for the bulk of protein degradation in eukaryotic cells, but the factors that cause different substrates to be unfolded and degraded to different extents are still poorly understood. We previously showed that polyubiquitinated substrates were degraded with greater processivity (with a higher tendency to be unfolded and degraded than released) than ubiquitin-independent substrates. Thus, even though ubiquitin chains are removed before unfolding and degradation occur, they affect the unfolding of a protein domain. How do ubiquitin chains activate the proteasome’s unfolding ability? We investigated the roles of the three intrinsic proteasomal ubiquitin receptors - Rpn1, Rpn10 and Rpn13 - in this activation. We find that these receptors are required for substrate-mediated activation of the proteasome’s unfolding ability. Rpn13 plays the largest role, but there is also partial redundancy between receptors. The architecture of substrate ubiquitination determines which receptors are needed for maximal unfolding ability, and, in some cases, simultaneous engagement of ubiquitin by multiple receptors may be required. Our results suggest physical models for how ubiquitin receptors communicate with the proteasomal motor proteins.


Biomolecules ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 217 ◽  
Author(s):  
Milic ◽  
Tian ◽  
Bernhagen

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is an evolutionarily conserved multi-protein complex, consisting of eight subunits termed CSN1-CSN8. The main biochemical function of the CSN is the control of protein degradation via the ubiquitin-proteasome-system through regulation of cullin-RING E3-ligase (CRL) activity by deNEDDylation of cullins, but the CSN also serves as a docking platform for signaling proteins. The catalytic deNEDDylase (isopeptidase) activity of the complex is executed by CSN5, but only efficiently occurs in the three-dimensional architectural context of the complex. Due to its positioning in a central cellular pathway connected to cell responses such as cell-cycle, proliferation, and signaling, the CSN has been implicated in several human diseases, with most evidence available for a role in cancer. However, emerging evidence also suggests that the CSN is involved in inflammation and cardiovascular diseases. This is both due to its role in controlling CRLs, regulating components of key inflammatory pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and complex-independent interactions of subunits such as CSN5 with inflammatory proteins. In this case, we summarize and discuss studies suggesting that the CSN may have a key role in cardiovascular diseases such as atherosclerosis and heart failure. We discuss the implicated molecular mechanisms ranging from inflammatory NF-κB signaling to proteotoxicity and necrosis, covering disease-relevant cell types such as myeloid and endothelial cells or cardiomyocytes. While the CSN is considered to be disease-exacerbating in most cancer entities, the cardiovascular studies suggest potent protective activities in the vasculature and heart. The underlying mechanisms and potential therapeutic avenues will be critically discussed.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2022 ◽  
Author(s):  
Yoshihisa Watanabe ◽  
Katsutoshi Taguchi ◽  
Masaki Tanaka

Ubiquitin signals play various roles in proteolytic and non-proteolytic functions. Ubiquitin signals are recognized as targets of the ubiquitin–proteasome system and the autophagy–lysosome pathway. In autophagy, ubiquitin signals are required for selective incorporation of cargoes, such as proteins, organelles, and microbial invaders, into autophagosomes. Autophagy receptors possessing an LC3-binding domain and a ubiquitin binding domain are involved in this process. Autophagy activity can decline as a result of genetic variation, aging, or lifestyle, resulting in the onset of various neurodegenerative diseases. This review summarizes the selective autophagy of neurodegenerative disease-associated protein aggregates via autophagy receptors and discusses its therapeutic application for neurodegenerative diseases.


2019 ◽  
Vol 25 (30) ◽  
pp. 3248-3256 ◽  
Author(s):  
Qingzhu Yang ◽  
Yao Yao ◽  
Kai Li ◽  
Lin Jiao ◽  
Jiazhen Zhu ◽  
...  

Repurposing already approved drugs as new anticancer agents is a promising strategy considering the advantages such as low costs, low risks and less time-consumption. Disulfiram (DSF), as the first drug for antialcoholism, was approved by the U.S. Food and Drug Administration (FDA) over 60 years ago. Increasing evidence indicates that DSF has great potential for the treatment of various human cancers. Several mechanisms and targets of DSF related to cancer therapy have been proposed, including the inhibition of ubiquitin-proteasome system (UPS), cancer cell stemness and cancer metastasis, and alteration of the intracellular reactive oxygen species (ROS). This article provides a brief review about the history of the use of DSF in humans and its molecular mechanisms and targets of anticancer therapy, describes DSF delivery strategies for cancer treatment, summarizes completed and ongoing cancer clinical trials involving DSF, and offers strategies to better use DSF in cancer therapies.


Sign in / Sign up

Export Citation Format

Share Document