scholarly journals The PD-L1 and TLR7 dual-targeting nanobody-drug conjugate exerts potent antitumor efficacy by orchestrating innate and adaptive immune responses

2021 ◽  
Author(s):  
Xiaolu Yu ◽  
Yiru Long ◽  
Binfan Chen ◽  
Yongliang Tong ◽  
Xiaomin Jia ◽  
...  

A variety of tumors are insensitive to immune checkpoint blockade (ICB) therapy. We propose that ICB therapy alone is insufficient to fully reactivate antitumor T cells, while effective mobilization of antigen-presenting cells (APCs) to assist adaptive immune cell activation can lead to potent antitumor effects with broad responsiveness. The Toll-like receptor 7 (TLR7) agonist SZU-101 we developed can induce the innate immune response against tumors and increase the immunogenicity of tumors. Interestingly, SZU-101-induced upregulation of programmed death ligand 1 (PD-L1) expression in tumor tissues can further enhance the response rate of the PD-L1 antibody. In addition, PD-L1 nanobodies have better solid tumor penetration ability, and because of this ability, they can be used to precisely deliver SZU-101 to tumor tissues. Therefore, a PD-L1 and TLR7 dual-targeting nanobody-drug conjugate (NDC), a novel drug molecule, was developed. We found that TLR7 agonists and PD-L1 nanobodies act synergistically and that NDC treatment reshapes the tumor immune microenvironment, activates both innate and adaptive immune cells, and exerts antitumor effects in both hot and cold tumors primarily through CD8+ T cells and natural killer (NK) cells. Our data show that a PD-L1 and TLR7 dual-targeting NDC can exhibit potent antitumor efficacy by orchestrating innate and adaptive immune responses and shows good prospects for clinical development.

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Nathalie Meijerink ◽  
Robin H. G. A. van den Biggelaar ◽  
Daphne A. van Haarlem ◽  
J. Arjan Stegeman ◽  
Victor P. M. G. Rutten ◽  
...  

AbstractSalmonella enterica serotype Enteritidis (SE) is a zoonotic pathogen which causes foodborne diseases in humans as well as severe disease symptoms in young chickens. More insight in innate and adaptive immune responses of chickens to SE infection is needed to understand elimination of SE. Seven-day-old broiler chickens were experimentally challenged with SE and numbers and responsiveness of innate and adaptive immune cells as well as antibody titers were assessed. SE was observed in the ileum and spleen of SE-infected chickens at 7 days post-infection (dpi). At 1 dpi numbers of intraepithelial cytotoxic CD8+ T cells were significantly increased alongside numerically increased intraepithelial IL-2Rα+ and 20E5+ natural killer (NK) cells at 1 and 3 dpi. At both time points, activation of intraepithelial and splenic NK cells was significantly enhanced. At 7 dpi in the spleen, presence of macrophages and expression of activation markers on dendritic cells were significantly increased. At 21 dpi, SE-induced proliferation of splenic CD4+ and CD8+ T cells was observed and SE-specific antibodies were detected in sera of all SE-infected chickens. In conclusion, SE results in enhanced numbers and activation of innate cells and we hypothesized that in concert with subsequent specific T cell and antibody responses, reduction of SE is achieved. A better understanding of innate and adaptive immune responses important in the elimination of SE will aid in developing immune-modulation strategies, which may increase resistance to SE in young broiler chickens.


Vaccine ◽  
2020 ◽  
Vol 38 (5) ◽  
pp. 1015-1024
Author(s):  
Isabella A. Joubert ◽  
Daniel Kovacs ◽  
Sandra Scheiblhofer ◽  
Petra Winter ◽  
Evgeniia Korotchenko ◽  
...  

2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A13.1-A13
Author(s):  
LK Klauer ◽  
O Schutti ◽  
S Ugur ◽  
F Doraneh-Gard ◽  
N Rogers ◽  
...  

BackgroundMyeloid leukaemic blasts can be converted into leukaemia derived dendritic cells (DCleu) with blastmodulatory Kit-I and Kit-M, which have the competence to regularly activate T and immunoreactive cells to gain anti-leukaemic activity or rather cytotoxicity. As innate and adaptive immune responses are notably promoted by the cytokine interferon gamma (IFNy), we hypothesised that the IFNy secretion could be a suitable parameter to display DC/DCleu mediated immunologic activity and even anti-leukaemic cytotoxicity.Materials and MethodsDC/DCleu were generated from leukaemic WB with Kit-I (GM-CSF + OK-432) and Kit-M (GM-CSF + PGE1) and used to stimulate T cell enriched immunoreactive cells. Initiated anti-leukaemic cytotoxicity was investigated with a cytotoxicity fluorolysis assay (CTX). Initiated IFNy secretion of innate and adaptive immune cells (T cells, TCD4+ cells, TCD8+ cells, NKCD56+ cells, NKCD161+ cells, CIKCD56+ cells, CIKCD161+ cells and iNKT) was investigated with a cytokine secretion assay (CSA). In some cases IFNy production was additionally evaluated with an intracellular cytokine assay (ICA). Conclusively, the IFNy secretion of immunoreactive cells was correlated with the anti-leukaemic cytotoxicity.ResultsSignificant amounts of DC and DCleu as well as migratory DC and DCleu could be generated with Kit-I and Kit-M without induction of blast proliferation. T cell enriched immunoreactive cells stimulated with DC/DCleu showed an increased anti-leukaemic cytotoxicity and an increased IFNy secretion of T, NK and CIK cells compared to control. Both the CSA and ICA yielded comparable amounts of IFNy positive innate and adaptive immune cells. The correlation between the IFNy secretion of immunoreactive cells and the anti-leukaemic cytotoxicity showed a positive relationship in T cells, TCD4+ cells, TCD8+ cells and NKCD56+ cells.ConclusionsWe found blastmodulatory Kit-I and Kit-M competent to generate DC/DCleu from leukaemic WB. Stimulation of T cell enriched immunoreactive cells with DC/DCleu regularly resulted in an increased anti-leukaemic cytotoxicity and an increased IFNy dependent immunological activity of T, NK and CIK cells compared to control. Moreover the anti-leukaemic cytotoxicity positively correlated with the IFNy secretion in T cells, TCD4+ cells, TCD8+ cells, NKCD56+ cells. We therefore consider the IFNy secretion of innate and adaptive immune cells to be a suitable parameter to assess the efficacy of in vitro and potentially in vivo AML immunotherapy. The CSA in this regard proved to be a convenient and reproducible technique to detect and phenotypically characterise IFNy secreting cells of the innate and adaptive immune system.Disclosure InformationL.K. Klauer: None. O. Schutti: None. S. Ugur: None. F. Doraneh-Gard: None. N. Rogers: None. M. Weinmann: None. D. Krämer: None. A. Rank: None. C. Schmid: None. B. Eiz-Vesper: None. H.M. Schmetzer: None.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1273-1273
Author(s):  
Hong Xu ◽  
Jun Yan ◽  
Suzanne T. Ildstad

Abstract Introduction: Recipient sensitization is one of the most critical problems facing clinical transplantation. Allosensitized recipients often rapidly reject vascularized solid organ grafts as a result of preformed anti-donor antibody. Similarly, bone marrow transplantation for sickle cell disease and thalassemia is limited by sensitization from transfusion. A method to prevent sensitization would have a significant impact on transplant outcomes. Until recently, T cells were believed to be the primary effector cell in the induction of adaptive immune responses. We recently found that humoral immunity provides a dominant barrier in allosensitization to MHC antigens. B cell activation occurs through T-cell-dependent responses via signaling from the co-stimulatory molecule CD154 (on T cells) to its ligand CD40 (on B cells). Here, we examined whether blocking the costimulatory interaction between T and B cells during exposure to alloantigen would prevent allosensitization. Materials and Methods: Mice deficient for CD154 molecule (CD154−/ −, H-2b), α β-TCR+ T cells (TCRβ −/ −, H-2b); or wild type B6 (H-2b) mice received allogeneic BALB/c (H-2d) skin grafts (SG) on day 0. Some B6 mice were also treated with anti-CD154 (day0 and day+3) and/or anti-α β-TCR mAb (day-3) peritransplant. Antibodies were detected by flow cytometry cross-match (FCM) assay and reported as mean fluorescence intensity (MFI). Results: CD154−/ − mice rejected primary BALB/c SG with a time course similar to normal B6 controls (12.4 ± 2.1 vs. 12.7 ± 2.4 days). TCRβ −/ − mice accepted SG permanently (>120 days). Notably, anti-donor antibody was not generated in either the CD154−/ − or TCRβ −/ − mice (MFI: 4.1 ± 0.1 and 4.2 ± 0.4) after SG compared with Ab in naïve serum (3.0±0.2). Sensitized B6 mice had significantly higher antibody titers (106.8 ± 35.1) 4 weeks after SG rejection. A second SG transplanted 5 to 7 weeks after the first graft was rejected at an accelerated rate (9.0 ± 0.8 days, P < 0.05) in the CD154−/ − mice, but no anti-donor MHC antibody was produced. Second grafts placed on TCRβ −/ − mice were accepted, as were the primary SG. In normal B6 recipients pretreated with anti-CD154 or anti-α β-TCR alone, SG survival was not significantly prolonged. The Ab titers were only slightly higher in mice treated with anti-CD154 (5.9±3.4; P>0.05) than in naïve mice, and significantly higher in mice treated with mAb anti-α β-TCR (45.1±25.6; P=0.03). The combined treatment with both mAbs resulted in complete abrogation of Ab production (4.2±0.9) and 70% of skin grafts survived >100 days. Germinal center formation, reflective of B cell activation, was completely disrupted in mice treated with anti-CD154 alone or combined with anti-α β-TCR. Conclusion: These results suggest that the CD40/CD154 co-stimulatory pathway is critically important in B cell activation to generate alloantibody. Notably, blocking molecular interactions between CD40/CD154 abrogated the generation of antibody and blocked germinal center formation, inducing B cell tolerance. The additional removal of recipient T cells in the context of co-stimulatory blockade resulted in the induction of T as well as B cell tolerance. These findings are the first demonstration that sensitization can be prevented through blockade of co-stimulatory interactions in the generation of adaptive immune responses and could have a significant impact on management of sensitized recipients in the clinic.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 1031-1031 ◽  
Author(s):  
Tomomi Nakayama Iwata ◽  
Chiaki Ishii ◽  
Yusuke Ogitani ◽  
Teiji Wada ◽  
Toshinori Agatsuma

1031 Background: DS-8201a, a HER2-targeting antibody–drug conjugate (ADC), with a topoisomerase I inhibitor, exatecan drivative (DX-8951 derivative, DXd) has been shown to have antitumor effects in preclinical xenograft models and clinical trials, but the involvement of the immune system in the antitumor efficacy of DS-8201a has not been elucidated yet. Methods: The antitumor efficacy of DS-8201a individually and in combination with an anti-PD-1 antibody was determined in a syngeneic mouse model with human HER2-expressing CT26.WT (CT26.WT-hHER2) cells. Mice whose tumors had been cured by DS-8201a treatment were rechallenged with CT26.WT-hHER2 cells; their splenocytes were co-cultured with CT26.WT-hHER2 or CT26.WT-mock cells, and IFN-g secretion by these cells was determined. To investigate effects of DXd and DS-8201a on dendritic cells (DCs), the expression of DC markers on bone marrow derived DCs (BMDCs) and intratumoral DCs was analyzed by flow cytometry. Furthermore, MHC class I and PD-L1 expression on tumor cells was analyzed. Results: At a weekly dosage of 10 mg/kg, DS-8201a showed significant antitumor effects in the mouse model. Mice whose tumors had been cured by DS-8201a treatment rejected the rechallenge with CT26.WT-hHER2 cells, and splenocytes from these mice were activated by both CT26.WT-hHER2 and CT26.WT-mock cells. In the mouse model, DS-8201a treatment raised a population of intratumoral DCs (CD45+CD11c+MHC class II+) and increased DC expression of CD86, a DC activation marker; DXd also up-regulated CD86 expression on BMDCs in vitro. Furthermore, DS-8201a up-regulated PD-L1 and MHC class I expression on tumor cells. Notably, antitumor effects of the combination of DS-8201a with an anti-PD-1 antibody were better than those of monotherapy. Conclusions: DS-8201a elicits immune responses via mechanisms other than cytotoxic effects on tumor cells. This finding suggests additional benefits of combining DS-8201a with an immune checkpoint inhibitor (ICI). The combination of DS-8201a and an anti-PD-1 antibody was effective in tumor suppression, indicating that DS-8201a may be successfully combined with an ICI in human clinical applications.


2012 ◽  
Vol 190 (2) ◽  
pp. 621-629 ◽  
Author(s):  
Lifei Hou ◽  
Zuliang Jie ◽  
Mayura Desai ◽  
Yuejin Liang ◽  
Lynn Soong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document