scholarly journals Effective vaccine allocation strategies, balancing economy with infection control against COVID-19 in Japan

Author(s):  
Satoshi Sunohara ◽  
Toshiaki Asakura ◽  
Takashi Kimura ◽  
Shun Ozawa ◽  
Satoshi Oshima ◽  
...  

AbstractDue to COVID-19, many countries including Japan have implemented a suspension of economic activities for infection control. It has contributed to reduce the transmission of COVID-19 but caused severe economic losses. Today, several promising vaccines have been developed and are already being distributed in some countries. Therefore, we evaluated various vaccine and intensive countermeasure strategies with constraint of economic loss using SEIR model to obtain knowledge of how to balance economy with infection control in Japan. Our main result is that the vaccination strategy that prioritizes younger generation outperformed the other strategies in terms of deaths. On the other hand, when we focused on strategies that prioritize older generation, as Japan has decided to do, the optimal vaccination strategy was determined by the basic reproduction number and acceptable economic loss. The strategy vaccinating the young next to the old age group was the best when acceptable economic loss was high, or the basic reproduction number was low. Alternatively, the strategy vaccinating the middle next to the old age group was superior to the others with a moderate acceptable economic loss and the high basic reproduction number setting.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dipo Aldila ◽  
Brenda M. Samiadji ◽  
Gracia M. Simorangkir ◽  
Sarbaz H. A. Khosnaw ◽  
Muhammad Shahzad

Abstract Objective Several essential factors have played a crucial role in the spreading mechanism of COVID-19 (Coronavirus disease 2019) in the human population. These factors include undetected cases, asymptomatic cases, and several non-pharmaceutical interventions. Because of the rapid spread of COVID-19 worldwide, understanding the significance of these factors is crucial in determining whether COVID-19 will be eradicated or persist in the population. Hence, in this study, we establish a new mathematical model to predict the spread of COVID-19 considering mentioned factors. Results Infection detection and vaccination have the potential to eradicate COVID-19 from Jakarta. From the sensitivity analysis, we find that rapid testing is crucial in reducing the basic reproduction number when COVID-19 is endemic in the population rather than contact trace. Furthermore, our results indicate that a vaccination strategy has the potential to relax social distancing rules, while maintaining the basic reproduction number at the minimum possible, and also eradicate COVID-19 from the population with a higher vaccination rate. In conclusion, our model proposed a mathematical model that can be used by Jakarta’s government to relax social distancing policy by relying on future COVID-19 vaccine potential.


2021 ◽  
Author(s):  
Shasha Gao ◽  
Maia Martcheva ◽  
Hongyu Miao ◽  
Libin Rong

Vaccination is effective in preventing human papillomavirus (HPV) infection. It still remains debatable whether males should be included in a vaccination program and unclear how to allocate the vaccine in genders to achieve the maximum benefits. In this paper, we use a two-sex model to assess HPV vaccination strategies and use the data from Guangxi Province in China as a case study. Both mathematical analysis and numerical simulations show that the basic reproduction number, an important indicator of the transmission potential of the infection, achieves its minimum when the priority of vaccination is given to the gender with a smaller recruit rate. Given a fixed amount of vaccine, splitting the vaccine evenly usually leads to a larger basic reproduction number and a higher prevalence of infection. Vaccination becomes less effective in reducing the infection once the vaccine amount exceeds the smaller recruit rate of the two genders. In the case study, we estimate the basic reproduction number is 1.0333 for HPV 16/18 in people aged 15-55. The minimal bivalent HPV vaccine needed for the disease prevalence to be below 0.05% is 24050 per year, which should be given to females. However, with this vaccination strategy it would require a very long time and a large amount of vaccine to achieve the goal. In contrast with allocating the same vaccine amount every year, we find that a variable vaccination strategy with more vaccine given in the beginning followed by less vaccine in later years can save time and total vaccine amount. The variable vaccination strategy illustrated in this study can help to better distribute the vaccine to reduce the HPV prevalence. Although this work is for HPV infection and the case study is for a province in China, the model, analysis and conclusions may be applicable to other sexually transmitted diseases in other regions or countries.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257107
Author(s):  
Satoshi Sunohara ◽  
Toshiaki Asakura ◽  
Takashi Kimura ◽  
Shun Ozawa ◽  
Satoshi Oshima ◽  
...  

Due to COVID-19, many countries including Japan have implemented a suspension of economic activities for infection control. It has contributed to reduce the transmission of COVID-19 but caused severe economic losses. Today, several promising vaccines have been developed and are already being distributed in some countries. Therefore, we evaluated various vaccine and intensive countermeasure strategies with constraint of economic loss using SEIR model to obtain knowledge of how to balance economy with infection control in Japan. Our main results were that the vaccination strategy that prioritized younger generation was better in terms of deaths when a linear relationship between lockdown intensity and acceptable economic loss was assumed. On the other hand, when a non-linearity relationship was introduced, implying that the strong lockdown with small economic loss was possible, the old first strategies were best in the settings of small basic reproduction number. These results indicated a high potential of remote work when prioritizing vaccination for the old generation. When focusing on only the old first strategies as the Japanese government has decided to do, the strategy vaccinating the young next to the old was superior to the others when a non-linear relationship was assumed due to sufficient reduction of contact with small economic loss.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
A. Elazzouzi ◽  
A. Lamrani Alaoui ◽  
M. Tilioua ◽  
A. Tridane

AbstractIn this work, we investigate the stability of an SIR epidemic model with a generalized nonlinear incidence rate and distributed delay. The model also includes vaccination term and general treatment function, which are the two principal control measurements to reduce the disease burden. Using the Lyapunov functions, we show that the disease-free equilibrium state is globally asymptotically stable if $\mathcal{R}_{0} \leq 1 $R0≤1, where $\mathcal{R}_{0} $R0 is the basic reproduction number. On the other hand, the disease-endemic equilibrium is globally asymptotically stable when $\mathcal{R}_{0} > 1 $R0>1. For a specific type of treatment and incidence functions, our analysis shows the success of the vaccination strategy, as well as the treatment depends on the initial size of the susceptible population. Moreover, we discuss, numerically, the behavior of the basic reproduction number with respect to vaccination and treatment parameters.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 86-100
Author(s):  
Nita H. Shah ◽  
Ankush H. Suthar ◽  
Ekta N. Jayswal ◽  
Ankit Sikarwar

In this article, a time-dependent susceptible-infected-recovered (SIR) model is constructed to investigate the transmission rate of COVID-19 in various regions of India. The model included the fundamental parameters on which the transmission rate of the infection is dependent, like the population density, contact rate, recovery rate, and intensity of the infection in the respective region. Looking at the great diversity in different geographic locations in India, we determined to calculate the basic reproduction number for all Indian districts based on the COVID-19 data till 7 July 2020. By preparing district-wise spatial distribution maps with the help of ArcGIS 10.2, the model was employed to show the effect of complete lockdown on the transmission rate of the COVID-19 infection in Indian districts. Moreover, with the model's transformation to the fractional ordered dynamical system, we found that the nature of the proposed SIR model is different for the different order of the systems. The sensitivity analysis of the basic reproduction number is done graphically which forecasts the change in the transmission rate of COVID-19 infection with change in different parameters. In the numerical simulation section, oscillations and variations in the model compartments are shown for two different situations, with and without lockdown.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Abdul Kuddus ◽  
M. Mohiuddin ◽  
Azizur Rahman

AbstractAlthough the availability of the measles vaccine, it is still epidemic in many countries globally, including Bangladesh. Eradication of measles needs to keep the basic reproduction number less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}<1)$$ ( i . e . R 0 < 1 ) . This paper investigates a modified (SVEIR) measles compartmental model with double dose vaccination in Bangladesh to simulate the measles prevalence. We perform a dynamical analysis of the resulting system and find that the model contains two equilibrium points: a disease-free equilibrium and an endemic equilibrium. The disease will be died out if the basic reproduction number is less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{ R}}_{0}<1)$$ ( i . e . R 0 < 1 ) , and if greater than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}>1)$$ ( i . e . R 0 > 1 ) epidemic occurs. While using the Routh-Hurwitz criteria, the equilibria are found to be locally asymptotically stable under the former condition on $${\mathrm{R}}_{0}$$ R 0 . The partial rank correlation coefficients (PRCCs), a global sensitivity analysis method is used to compute $${\mathrm{R}}_{0}$$ R 0 and measles prevalence $$\left({\mathrm{I}}^{*}\right)$$ I ∗ with respect to the estimated and fitted model parameters. We found that the transmission rate $$(\upbeta )$$ ( β ) had the most significant influence on measles prevalence. Numerical simulations were carried out to commissions our analytical outcomes. These findings show that how progression rate, transmission rate and double dose vaccination rate affect the dynamics of measles prevalence. The information that we generate from this study may help government and public health professionals in making strategies to deal with the omissions of a measles outbreak and thus control and prevent an epidemic in Bangladesh.


2015 ◽  
Vol 09 (01) ◽  
pp. 1650001 ◽  
Author(s):  
Drew Posny ◽  
Chairat Modnak ◽  
Jin Wang

We propose a general multigroup model for cholera dynamics that involves both direct and indirect transmission pathways and that incorporates spatial heterogeneity. Under biologically feasible conditions, we show that the basic reproduction number R0 remains a sharp threshold for cholera dynamics in multigroup settings. We verify the analysis by numerical simulation results. We also perform an optimal control study to explore optimal vaccination strategy for cholera outbreaks.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Bhagya Jyoti Nath ◽  
Kaushik Dehingia ◽  
Vishnu Narayan Mishra ◽  
Yu-Ming Chu ◽  
Hemanta Kumar Sarmah

AbstractIn this paper, we have mathematically analyzed a within-host model of SARS-CoV-2 which is used by Li et al. in the paper “The within-host viral kinetics of SARS-CoV-2” published in (Math. Biosci. Eng. 17(4):2853–2861, 2020). Important properties of the model, like nonnegativity of solutions and their boundedness, are established. Also, we have calculated the basic reproduction number which is an important parameter in the infection models. From stability analysis of the model, it is found that stability of the biologically feasible steady states are determined by the basic reproduction number $(\chi _{0})$ ( χ 0 ) . Numerical simulations are done in order to substantiate analytical results. A biological implication from this study is that a COVID-19 patient with less than one basic reproduction ratio can automatically recover from the infection.


Sign in / Sign up

Export Citation Format

Share Document