scholarly journals Relative Mutant N501Y SARS-CoV-2 Spike Protein RBD Inhibition of Anti-Spike Protein IgG and ACE-2 Binding to Spike Protein Species

2021 ◽  
Author(s):  
Melvin E. Klegerman ◽  
Jeffrey D. Cirillo ◽  
David D. McPherson

ABSTRACTIn the SARS-CoV-2 coronavirus pandemic of 2019 (COVID-19), it has become evident that the ACE-2 receptor-binding domain (RBD) of the viral spike protein (SP) is the target of neutralizing antibodies that comprise a critical element of protective immunity to the virus. The most definitive confirmation of this contention is that the two mRNA COVID-19 vaccines in general use, which elicit antibodies specific for the RBD, exhibit approximately 95% protective efficacy against COVID-19. A potential challenge to vaccine efficacy is the emergence of SARS-CoV-2 variants possessing multiple mutations affecting amino acid residues in the RBD. Of concern are variants that arose in the United Kingdom, Brazil and South Africa. One of the variants, designated B.1.351, has shown a higher transmissibility due to greater affinity for the ACE-2 receptor and decreased neutralization by convalescent plasma, therapeutic monoclonal antibodies, and post-vaccination plasma. Common to several of the variants is the N501Y mutation in the RBD, which may be responsible for at least part of the observed variant properties. To test this hypothesis, we measured the ability of the Y501 RBD to inhibit binding of the wild type RBD and full SP (S1 + S2) to the ACE-2 protein and a human monoclonal IgG antibody elicited to the wild type RBD, relative to the wild type RBD in two enzyme-linked immunosorbent assays (ELISAs). We found no significant difference in the IC50 of the two RBD species’ inhibition of ACE-2 binding, but unexpectedly found that the IC50 of the wild type RBD inhibition of antibody binding was nearly twice that of the Y501 RBD, reflecting a lower affinity. These results suggest that the individual N501Y mutation does not contribute to altered viral properties by itself, but may contribute to a collective conformational shift produced by multiple mutations.

2021 ◽  
Author(s):  
Kairat Tabynov ◽  
Madiana Orynbassar ◽  
Leila Yelchibayeva ◽  
Nurkeldi Turebekov ◽  
Toktassyn Yerubayev ◽  
...  

Abstract Whereas multiple vaccine types have been developed to curb the spread of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) among humans, there are very few vaccines being developed for animals including pets. To combat the threat of human-to-animal, animal-to-animal and animal-to-human transmission and the generation of new virus variants, we developed a subunit SARS-CoV-2 vaccine which is based on recombinant spike protein extracellular domain expressed in insect cells then formulated with appropriate adjuvants. Sixteen 8-12-week-old outbred female and male kittens (n=4/group) were randomly assigned into four treatment groups: Group 1, Antigen alone; Group 2, Sepivac SWE™ adjuvant; Group 3, aluminum hydroxide adjuvant; Group 4, PBS administered control animals. All animals were vaccinated twice at day 0 and 14, intramuscularly in a volume of 0.5 mL (Groups 1-3: 5 µg of Spike protein). On days 0 and 28 serum samples were collected to evaluate anti-spike IgG, inhibition of spike binding to angiotensin-converting enzyme 2 (ACE-2), neutralizing antibodies to Wuhan-01 SARS-CoV-2 D614G (wild-type) and Delta variant viruses, and whole blood for hematology studies. At day 28, all groups were challenged with SARS-CoV-2 wild-type virus 106 TCID50 intranasally. On day 31, tissue samples (lung, heart, and nasal turbinates) were collected for histology, viral RNA detection and virus titration. Parameters evaluated in this study included safety, immunogenicity, and protection from infection with wild-type SARS-CoV-2 virus. After two immunizations, both vaccines induced high titers of serum anti-spike IgG, ACE-2 binding inhibitory and neutralizing antibodies against both wild-type and Delta variant virus in the juvenile cats. Both subunit vaccines provided protection of juvenile cats against virus shedding from the upper respiratory tract, and against viral replication in the lower respiratory tract and hearts. These promising data warrant ongoing evaluation of the vaccine’s ability to protect cats against SARS-CoV-2 Delta variant and in particular to prevent transmission of the infection to naïve cats, before proceeding with large-scale field trials.


2021 ◽  
Author(s):  
Melvin E Klegerman ◽  
Tao Peng ◽  
Ira Seferovich ◽  
Mohammad H. Rahbar ◽  
Manouchehr Hessabi ◽  
...  

Soon after commencement of the SARS-CoV-2 disease outbreak of 2019 (COVID-19), it became evident that the receptor-binding domain of the viral spike protein is the target of neutralizing antibodies that comprise a critical element of protective immunity to the virus. This study addresses the relative lack of information regarding actual antibody concentrations in convalescent plasma samples from COVID-19 patients and extends these analyses to post-vaccination samples to estimate protective IgG antibody (Ab) levels. Both sample populations were similar and a protective Ab level of 7.5 μg/ml was determined, based on 95% of the normal distribution of the post-vaccination population. The results of this study have implications for future vaccine development, projection of protective efficacy duration, and understanding of the immune response to SARS-CoV-2 infection.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Rebecca L. Brocato ◽  
Steven A. Kwilas ◽  
Robert K. Kim ◽  
Xiankun Zeng ◽  
Lucia M. Principe ◽  
...  

AbstractA worldwide effort to counter the COVID-19 pandemic has resulted in hundreds of candidate vaccines moving through various stages of research and development, including several vaccines in phase 1, 2 and 3 clinical trials. A relatively small number of these vaccines have been evaluated in SARS-CoV-2 disease models, and fewer in a severe disease model. Here, a SARS-CoV-2 DNA targeting the spike protein and delivered by jet injection, nCoV-S(JET), elicited neutralizing antibodies in hamsters and was protective in both wild-type and transiently immunosuppressed hamster models. This study highlights the DNA vaccine, nCoV-S(JET), we developed has a great potential to move to next stage of preclinical studies, and it also demonstrates that the transiently-immunosuppressed Syrian hamsters, which recapitulate severe and prolonged COVID-19 disease, can be used for preclinical evaluation of the protective efficacy of spike-based COVID-19 vaccines.


2021 ◽  
Author(s):  
Jira Chansaenroj ◽  
Ritthideach Yorsaeng ◽  
Nasamon Wanlapakorn ◽  
Chintana Chirathaworn ◽  
Natthinee Sudhinaraset ◽  
...  

Abstract Understanding antibody responses after natural severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can guide the coronavirus disease 2019 (COVID-19) vaccine schedule. This study aimed to assess the dynamics of SARS-CoV-2 antibodies, including anti-spike protein 1 (S1) immunoglobulin (Ig)G, anti-receptor-binding domain (RBD) total Ig, anti-S1 IgA, and neutralizing antibody against wild-type SARS-CoV-2 in a cohort of patients who were previously infected with SARS-CoV-2. Between March and May 2020, 531 individuals with virologically confirmed cases of SARS-CoV-2 infection were enrolled in our immunological study. The neutralizing titers against SARS-CoV-2 were detected in 95.2%, 86.7%, 85.0%, and 85.4% of recovered COVID-19 patients at 3, 6, 9, and 12 months after symptom onset, respectively. The seropositivity rate of anti-S1 IgG, anti-RBD total Ig, anti-S1 IgA, and neutralizing titers remained at 68.6%, 89.6%, 77.1%, and 85.4%, respectively, at 12 months after symptom onset. The half-life of neutralizing titers was estimated at 100.7 days (95% confidence interval = 44.5 – 327.4 days, R2 = 0.106). These results support that the decline in serum antibody levels over time depends on the symptom severity, and the individuals with high IgG antibody titers experienced a significantly longer persistence of SARS-CoV-2-specific antibody responses than those with lower titers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Minjin Kim ◽  
Yucheol Cheong ◽  
Jinhee Lee ◽  
Jongkwan Lim ◽  
Sanguine Byun ◽  
...  

Influenza virus infections can cause a broad range of symptoms, form mild respiratory problems to severe and fatal complications. While influenza virus poses a global health threat, the frequent antigenic change often significantly compromises the protective efficacy of seasonal vaccines, further increasing the vulnerability to viral infection. Therefore, it is in great need to employ strategies for the development of universal influenza vaccines (UIVs) which can elicit broad protection against diverse influenza viruses. Using a mouse infection model, we examined the breadth of protection of the caspase-triggered live attenuated influenza vaccine (ctLAIV), which was self-attenuated by the host caspase-dependent cleavage of internal viral proteins. A single vaccination in mice induced a broad reactive antibody response against four different influenza viruses, H1 and rH5 (HA group 1) and H3 and rH7 subtypes (HA group 2). Notably, despite the lack of detectable neutralizing antibodies, the vaccination provided heterosubtypic protection against the lethal challenge with the viruses. Sterile protection was confirmed by the complete absence of viral titers in the lungs and nasal turbinates after the challenge. Antibody-dependent cellular cytotoxicity (ADCC) activities of non-neutralizing antibodies contributed to cross-protection. The cross-protection remained robust even after in vivo depletion of T cells or NK cells, reflecting the strength and breadth of the antibody-dependent effector function. The robust mucosal secretion of sIgA reflects an additional level of cross-protection. Our data show that the host-restricted designer vaccine serves an option for developing a UIV, providing pan-influenza A protection against both group 1 and 2 influenza viruses. The present results of potency and breadth of protection from wild type and reassortant viruses addressed in the mouse model by single immunization merits further confirmation and validation, preferably in clinically relevant ferret models with wild type challenges.


2005 ◽  
Vol 90 (9) ◽  
pp. 5037-5040 ◽  
Author(s):  
Shao-Wen Weng ◽  
Chia-Wei Liou ◽  
Tsu-Kung Lin ◽  
Yau-Huei Wei ◽  
Cheng-Feng Lee ◽  
...  

Abstract Objective: A common variant in mitochondrial DNA (mtDNA) at bp 16189 (T→C transition) has been associated with small birth size, adulthood hyperglycemia, and insulin resistance in Caucasians. In this study, we investigated whether mtDNA 16189 variant is associated with metabolic syndrome in Chinese subjects. Methods: Six hundred fifteen Chinese adults, aged 40 yr or older, were recruited in this study. The 16189 variant of mtDNA was detected using PCR and restriction enzyme digestion. Metabolic syndrome was diagnosed on modified National Cholesterol Education Program Adult Treatment Panel III guidelines, using body mass index (BMI) instead of waist circumference. An association study was performed with χ2 test and logistic regression analysis. Results: The prevalence of the 16189 variant was higher in patients with metabolic syndrome than in those without: 44% (125 of 284) vs. 33.2% (110 of 331) (P = 0.006). The association between this 16189 variant of mtDNA and metabolic syndrome (P = 0.021) remained significant even after correcting for age and BMI. As to the individual traits, the prevalence of fasting plasma glucose of at least 110 mg/dl (≥6.1 mmol/liter) [(51.5% (121 of 235) vs. 42.1% (160 of 380); P = 0.023], type 2 diabetes mellitus [48.1% (113 of 235) vs. 39.2% (149 of 380); P = 0.031], and hypertriglyceridemia [44.3% (104 of 235) vs. 35.8% (136 of 380); P = 0.037] were significantly higher in subjects harboring the 16189 variant of mtDNA than those with the wild type. However, the prevalence of hypertension [53.2% (125 of 235) vs. 47.6% (181 of 380); P = 0.180], BMI greater than 25 kg/m2 [48.5% (114 of 235) vs. 43.9% (167 of 380); P = 0.270], and low high-density lipoprotein cholesterol [61.3% (144 of 235) vs. 54.7% (208 of 380); P = 0.111] did not reach a significant difference between the two groups. Furthermore, there was a trend of increasing frequency of occurrence of the 16189 variant in individuals having an increasing number of components of metabolic syndrome (Ptrend < 0.005). Conclusion: Our data strongly suggest that mtDNA 16189 variant underlies susceptibility to metabolic syndrome in the Chinese population.


2021 ◽  
Author(s):  
Vincent Dussupt ◽  
Rajeshwer S. Sankhala ◽  
Letzibeth Mendez-Rivera ◽  
Samantha M. Townsley ◽  
Fabian Schmidt ◽  
...  

AbstractPrevention of viral escape and increased coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern require therapeutic monoclonal antibodies (mAbs) targeting multiple sites of vulnerability on the coronavirus spike glycoprotein. Here we identify several potent neutralizing antibodies directed against either the N-terminal domain (NTD) or the receptor-binding domain (RBD) of the spike protein. Administered in combinations, these mAbs provided low-dose protection against SARS-CoV-2 infection in the K18-human angiotensin-converting enzyme 2 mouse model, using both neutralization and Fc effector antibody functions. The RBD mAb WRAIR-2125, which targets residue F486 through a unique heavy-chain and light-chain pairing, demonstrated potent neutralizing activity against all major SARS-CoV-2 variants of concern. In combination with NTD and other RBD mAbs, WRAIR-2125 also prevented viral escape. These data demonstrate that NTD/RBD mAb combinations confer potent protection, likely leveraging complementary mechanisms of viral inactivation and clearance.


2021 ◽  
Author(s):  
Anu Haveri ◽  
Anna Solastie ◽  
Nina Ekström ◽  
Pamela Österlund ◽  
Hanna Nohynek ◽  
...  

The emergence of SARS-CoV-2 Omicron variant (B.1.1.529) with major spike protein mutations has raised concern over potential neutralization escape and breakthrough infections among vaccinated and previously SARS-CoV-2 infected subjects. We measured cross-protective antibodies against variants in health care workers (HCW, n=20) and nursing home residents (n=9) from samples collected 1-2 months following the booster (3rd) dose. We also assessed the antibody responses in prior to Omicron era infected subjects (n=38) with subsequent administration of a single mRNA vaccine dose. Following booster vaccination HCWs had high IgG antibody concentrations to the spike protein and neutralizing antibodies (NAb) were detectable against all variants. IgG concentrations among the elderly remained lower, and some lacked NAbs against the Beta and Omicron variants. NAb titers were significantly reduced against Delta, Beta and Omicron compared to wild-type virus regardless of age. Vaccination induced high IgG concentrations and variable titers of cross-reactive NAbs in previously infected subjects, whereas NAb titers against Omicron were barely detectable 1-month post-infection. High IgG concentrations with cross-protective neutralizing activity were detected after three COVID-19 vaccine doses in HCWs. However, lower NAb titers seen in the frail elderly suggest inadequate protection against Omicron breakthrough infections, yet protection against severe COVID-19 is expected.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tsun-Yung Kuo ◽  
Meei-Yun Lin ◽  
Robert L. Coffman ◽  
John D. Campbell ◽  
Paula Traquina ◽  
...  

AbstractThe COVID-19 pandemic is a worldwide health emergency which calls for an unprecedented race for vaccines and treatment. In developing a COVID-19 vaccine, we applied technology previously used for MERS-CoV to produce a prefusion-stabilized SARS-CoV-2 spike protein, S-2P. To enhance immunogenicity and mitigate the potential vaccine-induced immunopathology, CpG 1018, a Th1-biasing synthetic toll-like receptor 9 (TLR9) agonist was selected as an adjuvant candidate. S-2P in combination with CpG 1018 and aluminum hydroxide (alum) was found to be the most potent immunogen and induced high titer of neutralizing antibodies in sera of immunized mice against pseudotyped lentivirus reporter or live wild-type SARS-CoV-2. In addition, the antibodies elicited were able to cross-neutralize pseudovirus containing the spike protein of the D614G variant, indicating the potential for broad spectrum protection. A marked Th1 dominant response was noted from cytokines secreted by splenocytes of mice immunized with CpG 1018 and alum. No vaccine-related serious adverse effects were found in the dose-ranging study in rats administered single- or two-dose regimens of S-2P combined with CpG 1018 alone or CpG 1018 with alum. These data support continued development of CHO-derived S-2P formulated with CpG 1018 and alum as a candidate vaccine to prevent COVID-19 disease.


2001 ◽  
Vol 75 (16) ◽  
pp. 7290-7304 ◽  
Author(s):  
F. Guirakhoo ◽  
J. Arroyo ◽  
K. V. Pugachev ◽  
C. Miller ◽  
Z.-X. Zhang ◽  
...  

ABSTRACT We previously reported construction of a chimeric yellow fever-dengue type 2 virus (YF/DEN2) and determined its safety and protective efficacy in rhesus monkeys (F. Guirakhoo et al., J. Virol. 74:5477–5485, 2000). In this paper, we describe construction of three additional YF/DEN chimeras using premembrane (prM) and envelope (E) genes of wild-type (WT) clinical isolates: DEN1 (strain PUO359, isolated in 1980 in Thailand), DEN3 (strain PaH881/88, isolated in 1988 in Thailand), and DEN4 (strain 1228, isolated in 1978 in Indonesia). These chimeric viruses (YF/DEN1, YF/DEN3, and YF/DEN4) replicated to ∼7.5 log10 PFU/ml in Vero cells, were not neurovirulent in 3- to 4-week-old ICR mice inoculated by the intracerebral route, and were immunogenic in monkeys. All rhesus monkeys inoculated subcutaneously with one dose of these chimeric viruses (as monovalent or tetravalent formulation) developed viremia with magnitudes similar to that of the YF 17D vaccine strain (YF-VAX) but significantly lower than those of their parent WT viruses. Eight of nine monkeys inoculated with monovalent YF/DEN1 -3, or -4 vaccine and six of six monkeys inoculated with tetravalent YF/DEN1-4 vaccine seroconverted after a single dose. When monkeys were boosted with a tetravalent YF/DEN1-4 dose 6 months later, four of nine monkeys in the monovalent YF/DEN groups developed low levels of viremia, whereas no viremia was detected in any animals previously inoculated with either YF/DEN1-4 vaccine or WT DEN virus. An anamnestic response was observed in all monkeys after the second dose. No statistically significant difference in levels of neutralizing antibodies was observed between YF virus-immune and nonimmune monkeys which received the tetravalent YF/DEN1-4 vaccine or between tetravalent YF/DEN1-4-immune and nonimmune monkeys which received the YF-VAX. However, preimmune monkeys developed either no detectable viremia or a level of viremia lower than that in nonimmune controls. This is the first recombinant tetravalent dengue vaccine successfully evaluated in nonhuman primates.


Sign in / Sign up

Export Citation Format

Share Document