scholarly journals iCodon: ideal codon design for customized gene expression

2021 ◽  
Author(s):  
Santiago Medina-Munoz ◽  
Michay Diez ◽  
Luciana Castellano ◽  
Gabriel da Silva Pescador ◽  
Qiushuang Wu ◽  
...  

Messenger RNA (mRNA) stability substantially impacts steady-state gene expression levels in a cell. mRNA stability, in turn, is strongly affected by codon composition in a translation-dependent manner across species, through a mechanism termed codon optimality. We have developed iCodon (www.iCodon.org), an algorithm for customizing mRNA expression through the introduction of synonymous codon substitutions into the coding sequence. iCodon is optimized for four vertebrate transcriptomes: mouse, human, frog, and fish. Users can predict the mRNA stability of any coding sequence based on its codon composition and subsequently generate more stable (optimized) or unstable (deoptimized) variants encoding for the same protein. Further, we show that codon optimality predictions correlate with expression levels using fluorescent reporters and endogenous genes in human cells and zebrafish embryos. Therefore, iCodon will benefit basic biological research, as well as a wide range of applications for biotechnology and biomedicine.

2021 ◽  
Author(s):  
Ariel Bazzini

Abstract Messenger RNA (mRNA) stability substantially impacts steady-state gene expression levels in a cell. mRNA stability, in turn, is strongly affected by codon composition in a translation dependent manner across species, through a mechanism termed codon optimality. We have developed iCodon (www.iCodon.org), an algorithm for customizing mRNA expression through the introduction of synonymous codon substitutions into the coding sequence. iCodon is optimized for four vertebrate transcriptomes: mouse, human, frog, and fish. Users can predict the mRNA stability of any coding sequence based on its codon composition and subsequently generate more stable (optimized) or unstable (deoptimized) variants encoding for the same protein. Further, we show that codon optimality predictions correlate with expression levels using fluorescent reporters and endogenous genes in human cells and zebrafish embryos. Therefore, iCodon will benefit basic biological research, as well as a wide range of applications for biotechnology and biomedicine.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Santiago Gerardo Medina-Muñoz ◽  
Gopal Kushawah ◽  
Luciana Andrea Castellano ◽  
Michay Diez ◽  
Michelle Lynn DeVore ◽  
...  

Abstract Background The regulation of messenger RNA (mRNA) stability has a profound impact on gene expression dynamics during embryogenesis. For example, in animals, maternally deposited mRNAs are degraded after fertilization to enable new developmental trajectories. Regulatory sequences in 3′ untranslated regions (3′UTRs) have long been considered the central determinants of mRNA stability. However, recent work indicates that the coding sequence also possesses regulatory information. Specifically, translation in cis impacts mRNA stability in a codon-dependent manner. However, the strength of this mechanism during embryogenesis, as well as its relationship with other known regulatory elements, such as microRNA, remains unclear. Results Here, we show that codon composition is a major predictor of mRNA stability in the early embryo. We show that this mechanism works in combination with other cis-regulatory elements to dictate mRNA stability in zebrafish and Xenopus embryos as well as in mouse and human cells. Furthermore, we show that microRNA targeting efficacy can be affected by substantial enrichment of optimal (stabilizing) or non-optimal (destabilizing) codons. Lastly, we find that one microRNA, miR-430, antagonizes the stabilizing effect of optimal codons during early embryogenesis in zebrafish. Conclusions By integrating the contributions of different regulatory mechanisms, our work provides a framework for understanding how combinatorial control of mRNA stability shapes the gene expression landscape.


2021 ◽  
Vol 11 (13) ◽  
pp. 5859
Author(s):  
Fernando N. Santos-Navarro ◽  
Yadira Boada ◽  
Alejandro Vignoni ◽  
Jesús Picó

Optimal gene expression is central for the development of both bacterial expression systems for heterologous protein production, and microbial cell factories for industrial metabolite production. Our goal is to fulfill industry-level overproduction demands optimally, as measured by the following key performance metrics: titer, productivity rate, and yield (TRY). Here we use a multiscale model incorporating the dynamics of (i) the cell population in the bioreactor, (ii) the substrate uptake and (iii) the interaction between the cell host and expression of the protein of interest. Our model predicts cell growth rate and cell mass distribution between enzymes of interest and host enzymes as a function of substrate uptake and the following main lab-accessible gene expression-related characteristics: promoter strength, gene copy number and ribosome binding site strength. We evaluated the differential roles of gene transcription and translation in shaping TRY trade-offs for a wide range of expression levels and the sensitivity of the TRY space to variations in substrate availability. Our results show that, at low expression levels, gene transcription mainly defined TRY, and gene translation had a limited effect; whereas, at high expression levels, TRY depended on the product of both, in agreement with experiments in the literature.


2003 ◽  
Vol 01 (03) ◽  
pp. 541-586 ◽  
Author(s):  
Tero Aittokallio ◽  
Markus Kurki ◽  
Olli Nevalainen ◽  
Tuomas Nikula ◽  
Anne West ◽  
...  

Microarray analysis has become a widely used method for generating gene expression data on a genomic scale. Microarrays have been enthusiastically applied in many fields of biological research, even though several open questions remain about the analysis of such data. A wide range of approaches are available for computational analysis, but no general consensus exists as to standard for microarray data analysis protocol. Consequently, the choice of data analysis technique is a crucial element depending both on the data and on the goals of the experiment. Therefore, basic understanding of bioinformatics is required for optimal experimental design and meaningful interpretation of the results. This review summarizes some of the common themes in DNA microarray data analysis, including data normalization and detection of differential expression. Algorithms are demonstrated by analyzing cDNA microarray data from an experiment monitoring gene expression in T helper cells. Several computational biology strategies, along with their relative merits, are overviewed and potential areas for additional research discussed. The goal of the review is to provide a computational framework for applying and evaluating such bioinformatics strategies. Solid knowledge of microarray informatics contributes to the implementation of more efficient computational protocols for the given data obtained through microarray experiments.


2007 ◽  
Vol 7 (3) ◽  
pp. 435-443 ◽  
Author(s):  
Manoj K. Puthia ◽  
Jia Lu ◽  
Kevin S. W. Tan

ABSTRACT Blastocystis is a ubiquitous enteric protozoan found in the intestinal tracts of humans and a wide range of animals. Evidence accumulated over the last decade suggests association of Blastocystis with gastrointestinal disorders involving diarrhea, abdominal pain, constipation, nausea, and fatigue. Clinical and experimental studies have associated Blastocystis with intestinal inflammation, and it has been shown that Blastocystis has potential to modulate the host immune response. Blastocystis is also reported to be an opportunistic pathogen in immunosuppressed patients, especially those suffering from AIDS. However, nothing is known about the parasitic virulence factors and early events following host-parasite interactions. In the present study, we investigated the molecular mechanism by which Blastocystis activates interleukin-8 (IL-8) gene expression in human colonic epithelial T84 cells. We demonstrate for the first time that cysteine proteases of Blastocystis ratti WR1, a zoonotic isolate, can activate IL-8 gene expression in human colonic epithelial cells. Furthermore, we show that NF-κB activation is involved in the production of IL-8. In addition, our findings show that treatment with the antiprotozoal drug metronidazole can avert IL-8 production induced by B. ratti WR1. We also show for the first time that the central vacuole of Blastocystis may function as a reservoir for cysteine proteases. Our findings will contribute to an understanding of the pathobiology of a poorly studied parasite whose public health importance is increasingly recognized.


2018 ◽  
Vol 35 (06) ◽  
pp. 583-588 ◽  
Author(s):  
Ilaria Galliano ◽  
Maria Garro ◽  
Andrea Savino ◽  
Paolo Manzoni ◽  
Valentina Daprà ◽  
...  

Background Toll-like receptors (TLRs) are potentially useful indicators of several pediatric disease states. Here, we explore the mechanisms by which inflammation is regulated by interactions between microbiota and the host. Little data are available regarding the expression of TLRs in postnatal healthy infants. TLR 2 and TLR4 are extracellular TLRs that act as innate immune receptors by recognizing a wide range of endogenous ligands and microorganisms. Methods The aim of this study was to use real-time polymerase chain reaction to investigate the expression of the messenger RNAs (mRNAs) of TLR2 and TLR4 in blood samples obtained from healthy full-term infants and toddlers. Results We analyzed the mRNA expression levels of TLRs in 88 healthy term children separated according to age. The median expression level of TLR2 was 1.49 ± 1.10 arbitrary units (AU) (n = 25) in infants younger than 3 months, 0.67 ± 0.72 AU (n = 25) in infants aged between 3 and 12 months, and 0.03 ± 0.02 AU (n= 38) in infants older than 12 months. The median expression level of TLR4 was 1.25 ± 0.79 AU (n = 25) in infants younger than 3 months, 0.75 ± 0.54 AU (n = 25) in infants aged 3 to 12 months, and 0.44 ± 0.28 AU (n = 38) in infants older than 12 months. There was difference in the mRNA expression level of TLR2 and TLR4 between infants aged 0 to 3 and 3 to 12 months and those aged more than 1 year (p < 0.0001 and p < 0.0001, respectively) Conclusion We found that the expression levels of TLR2 and TLR4 were associated with age. In particular, we observed that their expression increased during the suckling period and then clearly decreased once the infants reached 1 year of age (p < 0.001). These findings could be related to microbial colonization and the immune system.


Blood ◽  
1993 ◽  
Vol 81 (6) ◽  
pp. 1540-1548 ◽  
Author(s):  
D Chauhan ◽  
SM Kharbanda ◽  
E Rubin ◽  
BA Barut ◽  
A Mohrbacher ◽  
...  

Abstract The present studies have examined the effects of mitogens on induction of early response gene expression in normal peripheral blood T and Jurkat cells. Pokeweed mitogen (PWM) or anti-CD3 significantly increases c-jun messenger RNA (mRNA) levels in T cells. This transient PWM-related increase in c-jun transcripts is maximal after 15 to 30 minutes of exposure of T cells to PWM. PWM induces c-jun gene expression in a concentration-dependent manner. Moreover, PWM similarly induces expression of other genes coding for leucine zipper transcription factors, ie, jun-B and c-fos. Nuclear run on assays demonstrate that PWM treatment is associated with an increased rate of c-jun gene transcription. Transient expression assays with c-jun promoter fragments linked to the chloramphenicol acetyltransferase gene suggest that the PWM-induced increase in transcription is mediated by the AP-1 transcription factor complex. Moreover, treatment of T cells with actinomycin D to block further transcription before their culture with PWM suggests that the increase in c-jun gene expression by PWM is also regulated at least in part by a posttranscriptional mechanism. Cycloheximide does not alter c-jun mRNA induction by PWM. Finally, given that PWM induces B-cell differentiation in an interleukin-6 (IL- 6)-mediated, T-cell-dependent manner, the relationship of c-jun and IL- 6 gene expression in PWM-stimulated T cells was examined. The induction of IL-6 mRNA in T cells stimulated by PWM occurs after maximal induction of c-jun mRNA, at a time when the latter is no longer detectable. These findings suggest that PWM induces c-jun gene expression in T cells by a transcriptional and posttranscriptional mechanism and that AP-1 confers PWM inducibility of this gene. Because the IL-6 promoter has several potential transcriptional control elements, one of which is an AP-1-binding site, future experiments will evaluate the role of c-jun in the regulation of PWM-induced IL-6 synthesis by T cells.


2020 ◽  
Vol 105 (1) ◽  
pp. 247-258
Author(s):  
Lena Hoffmann ◽  
Michael-Frederick Sugue ◽  
Thomas Brüser

Abstract Pseudomonads are among the most common bacteria in soils, limnic ecosystems, and human, animal, or plant host environments, including intensively studied species such as Pseudomonas aeruginosa, P. putida, or P. fluorescens. Various gene expression systems are established for some species, but there is still a need for a simple system that is suitable for a wide range of pseudomonads and that can be used for physiological applications, i.e., with a tuning capacity at lower expression levels. Here, we report the establishment of the anthranilate-dependent PantA promoter for tunable gene expression in pseudomonads. During studies on P. fluorescens, we constructed an anthranilate-inducible AntR/PantA-based expression system, named pUCP20-ANT, and used GFP as reporter to analyze gene expression. This system was compared with the rhamnose-inducible RhaSR/PrhaB-based expression system in an otherwise identical vector background. While the rhamnose-inducible system did not respond to lower inducer concentrations and always reached high levels over time when induced, expression levels of the pUCP20-ANT system could be adjusted to a range of distinct lower or higher levels by variation of anthranilate concentrations in the medium. Importantly, the anthranilate-inducible expression system worked also in strains of P. aeruginosa and P. putida and therefore will be most likely useful for physiological and biotechnological purposes in a wide range of pseudomonads. Key points • We established an anthranilate-inducible gene expression system for pseudomonads. • This system permits tuning of gene expression in a wide range of pseudomonads. • It will be very useful for physiological and biotechnological applications.


2018 ◽  
Author(s):  
Matthew M. Crane ◽  
Bryan Sands ◽  
Christian Battaglia ◽  
Brock Johnson ◽  
Soo Yun ◽  
...  

AbstractIntrons can increase gene expression levels using a variety of mechanisms collectively referred to as Intron Mediated Enhancement (IME). To date, the magnitude of IME has been quantified in human cell culture and plant models by comparing intronless reporter gene expression levels to those of intron-bearing reporter genes in vitro (mRNA, Western Blots, protein activity), using genome editing technologies that lacked full control of locus and copy number. Here, for the first time, we quantified IME in vivo, in terms of protein expression levels, using fluorescent reporter proteins expressed from a single, defined locus in Caenorhabditis elegans. To quantify the magnitude of IME, we developed a microfluidic chip-based workflow to mount and image individual animals, including software for operation and image processing. We used this workflow to systematically test the effects of position, number and sequence of introns on two different proteins, mCherry and mEGFP, driven by two different promoters, vit-2 and hsp-90. We found the three canonical synthetic introns commonly used in C. elegans transgenes increased mCherry protein concentration by approximately 50%. The naturally-occurring introns found in hsp-90 also increased mCherry expression level by about 50%. Furthermore, and consistent with prior results examining mRNA levels, protein activity or phenotypic rescue, we found that a single, natural or synthetic, 5’ intron was sufficient for the full IME effect while a 3’ intron was not. IME was also affected by protein coding sequence (50% for mCherry and 80% for mEGFP) but not strongly affected by promoter 46% for hsp-90 and 54% for the stronger vit-2. Our results show that IME of protein expression in C. elegans is affected by intron position and contextual coding sequence surrounding the introns, but not greatly by promoter strength. Our combined controlled transgenesis and microfluidic screening approach should facilitate screens for factors affecting IME and other intron-dependent processes.


2021 ◽  
Author(s):  
Jian-Rong Li ◽  
Mabel Tang ◽  
Yafang Li ◽  
Christopher I Amos ◽  
Chao Cheng

Abstract Background: Expression quantitative trait loci (eQTLs) analyses have been widely used to identify genetic variants associated with gene expression levels to understand what molecular mechanisms underlie genetic traits. The resultant eQTLs might affect the expression of associated genes through transcriptional or post-transcriptional regulation. In this study, we attempt to distinguish these two types of regulation by identifying genetic variants associated with mRNA stability of genes (stQTLs).Results: Here, we presented a computational framework that take the advantage of recently developed methods to infer the mRNA stability of genes based on RNA-seq data and performed association analysis to identify stQTLs. Using the Genotype-Tissue Expression (GTEx) lung RNA-Seq data, we identified a total of 142,801 stQTLs for 3,942 genes and 186,132 eQTLs for 4,751 genes from 15,122,700 genetic variants for 13,476 genes, respectively. Interesting, our results indicated that stQTLs were enriched in the CDS and 3’UTR regions, while eQTLs are enriched in the CDS, 3’UTR, 5’UTR, and upstream regions. We also found that stQTLs are more likely than eQTLs to overlap with RNA binding protein (RBP) and microRNA (miRNA) binding sites. Our analyses demonstrate that simultaneous identification of stQTLs and eQTLs can provide more mechanistic insight on the association between genetic variants and gene expression levels.


Sign in / Sign up

Export Citation Format

Share Document