scholarly journals Why Are Viscosity and Nonlinearity Bound to Make an Impact in Clinical Elastographic Diagnosis?

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2379 ◽  
Author(s):  
Guillermo Rus ◽  
Inas H. Faris ◽  
Jorge Torres ◽  
Antonio Callejas ◽  
Juan Melchor

The adoption of multiscale approaches by the biomechanical community has caused a major improvement in quality in the mechanical characterization of soft tissues. The recent developments in elastography techniques are enabling in vivo and non-invasive quantification of tissues’ mechanical properties. Elastic changes in a tissue are associated with a broad spectrum of pathologies, which stems from the tissue microstructure, histology and biochemistry. This knowledge is combined with research evidence to provide a powerful diagnostic range of highly prevalent pathologies, from birth and labor disorders (prematurity, induction failures, etc.), to solid tumors (e.g., prostate, cervix, breast, melanoma) and liver fibrosis, just to name a few. This review aims to elucidate the potential of viscous and nonlinear elastic parameters as conceivable diagnostic mechanical biomarkers. First, by providing an insight into the classic role of soft tissue microstructure in linear elasticity; secondly, by understanding how viscosity and nonlinearity could enhance the current diagnosis in elastography; and finally, by compounding preliminary investigations of those elastography parameters within different technologies. In conclusion, evidence of the diagnostic capability of elastic parameters beyond linear stiffness is gaining momentum as a result of the technological and imaging developments in the field of biomechanics.

Author(s):  
Guo-Yang Li ◽  
Yanping Cao

Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 977.1-977
Author(s):  
A. Potapova ◽  
O. Egorova ◽  
O. Alekseeva ◽  
A. Volkov ◽  
S. Radenska-Lopovok

Background:Ultrasound (US) is a non-invasive and safe imaging method that allows in vivo differentiation of the morphological structures of subcutaneous fat (SCF) tissue in in normal and pathology.Objectives:Reveal features of ultrasound changes in SCF in panniculitis (Pn).Methods:57 patients (f – 45, m - 12) aged 18 - 67 years with an initial diagnosis of erythema nodosum and a disease duration of 3.6 ± 1.4 years were examined. In addition to the general clinical examination, a computed tomography of the chest organs and a pathomorphological examination of a skin biopsy from the site of the node were performed. Ultrasound was performed on a MyLabTwice apparatus (ESAOTE, Italy) using a multi-frequency linear transducer (10-18 MHz) with the PD technique, the parameters of which were adapted for recording low-speed flows (PRF 300-600 Hz, low filter, dynamic range - 20-40 dB), the presence of vascularization was assessed not only in the affected area, but also on the contralateral side using high-energy Doppler.Results:33 patients were diagnosed with septal Pn (SPn), 24 - lobular Pn (LPn). In all cases, the diagnosis was verified by histological examination. Ultrasound made it possible to assess the thickness, echoicity and vascularization of the SCF. In 35 patients, significant thickening of the SCF was revealed (as compared to the contralateral side), of which in 14 cases with SPn, in 21 - with LPn. Significant diffuse thickening of the SCF with the contralateral side was observed in 18 patients, incl. in 12 (66%) patients with LPn. Limited thickening was more typical for SPn (73%). A significant increase in the echoicity of the SCF was noted in all forms of Pn. A “lobular” echo pattern with an anechogenic environment was observed in 25 patients, of which 18 (72%) had LPn. An increase in vascularization compared to the contralateral side was recorded in 30 cases (SPn-17, LPn-13).Conclusion:The obtained preliminary results indicate the important role of ultrasound in assessing the depth and prevalence of the inflammatory process at Pn. To clarify the diagnostic value of this method, further studies are needed on a larger sample of patients.Disclosure of Interests:None declared


Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 45
Author(s):  
Iman M. Alfagih ◽  
Basmah Aldosari ◽  
Bushra AlQuadeib ◽  
Alanood Almurshedi ◽  
Mariyam M. Alfagih

Messenger RNA (mRNA)-based vaccines have shown promise against infectious diseases and several types of cancer in the last two decades. Their promise can be attributed to their safety profiles, high potency, and ability to be rapidly and affordably manufactured. Now, many RNA-based vaccines are being evaluated in clinical trials as prophylactic and therapeutic vaccines. However, until recently, their development has been limited by their instability and inefficient in vivo transfection. The nanodelivery system plays a dual function in RNA-based vaccination by acting as a carrier system and as an adjuvant. That is due to its similarity to microorganisms structurally and size-wise; the nanodelivery system can augment the response by the immune system via simulating the natural infection process. Nanodelivery systems allow non-invasive mucosal administration, targeted immune cell delivery, and controlled delivery, reducing the need for multiple administrations. They also allow co-encapsulating with immunostimulators to improve the overall adjuvant capacity. The aim of this review is to discuss the recent developments and applications of biodegradable nanodelivery systems that improve RNA-based vaccine delivery and enhance the immunological response against targeted diseases.


1993 ◽  
Vol 15 (3) ◽  
pp. 238-254 ◽  
Author(s):  
Tomy Varghese ◽  
Kevin D. Donohue

Characterization of tissue microstructure from the backscattered ultrasound signal using the spectral autocorrelation (SAC) function provides information about the scatterer distribution in biological tissue. This paper demonstrates SAC capabilities in characterizing periodicities in A-scans due to regularity in the scatterer distribution. The A-scan is modelled as a cyclostationary signal, where the statistical parameters of the signal vary in time with single or multiple periodicities. This periodicity manifests itself as spectral peaks both in the power spectral density (PSD) and in the SAC. Periodicity in the PSD will produce a well defined dominant peak in the cepstrum, which has been used to determine the scatterer spacing. The relationship between the scatterer spacing and the spacing of the spectral peaks is established using a stochastic model of the echo-formation process from biological tissue. The distribution of the scatterers within the microstructure is modelled using a Gamma function, which offers a flexible method of simulating parametric regularity in the scatterer spacing. Simulations of the tissue microstructure for lower orders of regularity indicate that the SAC components reveal information about the scatterer spacing that are not seen in the PSD and the cepstrum. The echo-formation process is tested by simulating microstructure of varying regularity and analyzing their effect on the SAC, PSD and cepstrum. Experimental validation of the simulation results are provided using in vivo scans of the breast and liver tissue that show the presence of significant spectral correlation components in the SAC.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1357
Author(s):  
Andreea-Mariana Negrescu ◽  
Anisoara Cimpean

The critical role of the immune system in host defense against foreign bodies and pathogens has been long recognized. With the introduction of a new field of research called osteoimmunology, the crosstalk between the immune and bone-forming cells has been studied more thoroughly, leading to the conclusion that the two systems are intimately connected through various cytokines, signaling molecules, transcription factors and receptors. The host immune reaction triggered by biomaterial implantation determines the in vivo fate of the implant, either in new bone formation or in fibrous tissue encapsulation. The traditional biomaterial design consisted in fabricating inert biomaterials capable of stimulating osteogenesis; however, inconsistencies between the in vitro and in vivo results were reported. This led to a shift in the development of biomaterials towards implants with osteoimmunomodulatory properties. By endowing the orthopedic biomaterials with favorable osteoimmunomodulatory properties, a desired immune response can be triggered in order to obtain a proper bone regeneration process. In this context, various approaches, such as the modification of chemical/structural characteristics or the incorporation of bioactive molecules, have been employed in order to modulate the crosstalk with the immune cells. The current review provides an overview of recent developments in such applied strategies.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2874
Author(s):  
Hengfeng Yuan ◽  
Wen Jiang ◽  
Yuanxin Chen ◽  
Betty Kim

Ischemic injuries and local hypoxia can result in osteocytes dysfunction and play a key role in the pathogenesis of avascular osteonecrosis. Conventional imaging techniques including magnetic resonance imaging (MRI) and computed tomography (CT) can reveal structural and functional changes within bony anatomy; however, characterization of osteocyte behavioral dynamics in the setting of osteonecrosis at the single cell resolution is limited. Here, we demonstrate an optical approach to study real-time osteocyte functions in vivo. Using nicotinamide adenine dinucleotide (NADH) as a biomarker for metabolic dynamics in osteocytes, we showed that NADH level within osteocytes transiently increase significantly after local ischemia through non-invasive photo-induced thrombosis of afferent arterioles followed by a steady decline. Our study presents a non-invasive optical approach to study osteocyte behavior through the modulation of local environmental conditions. Thus it provides a powerful toolkit to study cellular processes involved in bone pathologies in vivo.


Author(s):  
Kristin M. Myers ◽  
Thao D. Nguyen

Small rodent models have become increasingly useful to investigate how the mechanical properties of soft tissues may influence disease development. These animal models allow access to aged, diseased, or genetically-altered tissue samples, and through comparisons with wild-type or normal tissue it can be explored how each of these variables influence tissue function. The challenges to deriving meaningful material parameters for these small tissue samples include designing physiologically-relevant mechanical testing protocols and interpreting the experimental load-displacement data in an appropriate constitutive framework to quantify material parameters. This study was motivated by determining the possible role of scleral material properties in the development of glaucomatous damage to the retinal ganglion cells (RGC). Glaucoma is one of the leading causes of blindness in the United States and in the world with an estimate of 60 million people affected by this year [1]. Through exploring mouse models, the overall goal of our work is to determine the role of scleral material properties and scleral tissue microstructure in the pathogenesis of glaucoma.


2018 ◽  
Vol 32 (01) ◽  
pp. 1750274 ◽  
Author(s):  
Ying-Mei Qin ◽  
Cong Men ◽  
Jia Zhao ◽  
Chun-Xiao Han ◽  
Yan-Qiu Che

We focus on the role of heterogeneity on the propagation of firing patterns in feedforward network (FFN). Effects of heterogeneities both in parameters of neuronal excitability and synaptic delays are investigated systematically. Neuronal heterogeneity is found to modulate firing rates and spiking regularity by changing the excitability of the network. Synaptic delays are strongly related with desynchronized and synchronized firing patterns of the FFN, which indicate that synaptic delays may play a significant role in bridging rate coding and temporal coding. Furthermore, quasi-coherence resonance (quasi-CR) phenomenon is observed in the parameter domain of connection probability and delay-heterogeneity. All these phenomena above enable a detailed characterization of neuronal heterogeneity in FFN, which may play an indispensable role in reproducing the important properties of in vivo experiments.


Sign in / Sign up

Export Citation Format

Share Document