scholarly journals Mapping tree species for restoration potential resilient to climate change

2021 ◽  
Author(s):  
Nina van Tiel ◽  
Lisha Lyu ◽  
Fabian Fopp ◽  
Johan van den Hoogen ◽  
Dirk Nikolaus Karger ◽  
...  

The restoration of forest ecosystems is associated with key benefits for biodiversity and ecosystem services. Where possible, ecosystem restoration efforts should be guided by a detailed knowledge of the native flora to regenerate ecosystems in a way that benefits natural biodiversity, ecosystem services, and nature's contribution to people. Machine learning can map the ecological suitability of tree species globally, which then can guide restoration efforts, especially in regions where knowledge about the native tree flora is still insufficient. We developed an algorithm that combines ecological niche modelling and geographic distributions that allows for the high resolution (1km) global mapping of the native range and suitability of 3,987 tree species under current and future climatic conditions. We show that in most regions where forest cover could be potentially increased, heterogeneity in ecological conditions and narrow species niche width limit species occupancy, so that in several areas with reforestation potential, a large amount of potentially suitable species would be required for successful reforestation. Local tree planting efforts should consider a wide variety of species to ensure that the equally large variety of ecological conditions can be covered. Under climate change, a large fraction of the surface for restoration will suffer significant turnover in suitability, so that areas that are suitable for many species under current conditions will not be suitable in the future anymore. Such a turnover due to shifting climate is less pronounced in regions containing species with broader geographical distributions. This indicates that if restoration decisions are solely based on current climatic conditions, a large fraction of the restored area will become unsuitable in the future. Decisions on forest restoration should therefore take the niche width of a tree species into account to mitigate the risk of climate-driven ecosystem degradation.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hendri Irwandi ◽  
Mohammad Syamsu Rosid ◽  
Terry Mart

AbstractThis research quantitatively and qualitatively analyzes the factors responsible for the water level variations in Lake Toba, North Sumatra Province, Indonesia. According to several studies carried out from 1993 to 2020, changes in the water level were associated with climate variability, climate change, and human activities. Furthermore, these studies stated that reduced rainfall during the rainy season due to the El Niño Southern Oscillation (ENSO) and the continuous increase in the maximum and average temperatures were some of the effects of climate change in the Lake Toba catchment area. Additionally, human interventions such as industrial activities, population growth, and damage to the surrounding environment of the Lake Toba watershed had significant impacts in terms of decreasing the water level. However, these studies were unable to determine the factor that had the most significant effect, although studies on other lakes worldwide have shown these factors are the main causes of fluctuations or decreases in water levels. A simulation study of Lake Toba's water balance showed the possibility of having a water surplus until the mid-twenty-first century. The input discharge was predicted to be greater than the output; therefore, Lake Toba could be optimized without affecting the future water level. However, the climate projections depicted a different situation, with scenarios predicting the possibility of extreme climate anomalies, demonstrating drier climatic conditions in the future. This review concludes that it is necessary to conduct an in-depth, comprehensive, and systematic study to identify the most dominant factor among the three that is causing the decrease in the Lake Toba water level and to describe the future projected water level.


2021 ◽  
Author(s):  
Katharina Enigl ◽  
Matthias Schlögl ◽  
Christoph Matulla

<p>Climate change constitutes a main driver of altering population dynamics of spruce bark beetles (<em>Ips typographus</em>) all over Europe. Their swarming activity as well as development rate are strongly dependent on temperature and the availability of brood trees. Especially over the last years, the latter has substantially increased due to major drought events which led to a widespread weakening of spruce stands. Since both higher temperatures and longer drought periods are to be expected in Central Europe in the decades ahead, foresters face the challenges of maintaining sustainable forest management and safeguarding future yields. One approach used to foster decision support in silviculture relies on the identification of possible alternative tree species suitable for adapting to expected future climate conditions in threatened regions. </p><p>In this study, we focus on the forest district of Horn, a region in Austria‘s north east that is beneficially influenced by the mesoclimate of the Pannonian basin. This fertile yet dry area has been severely affected by mass propagations of <em>Ips typographus</em> due to extensive droughts since 2017, and consequently has suffered from substantial forest damage in recent years. The urgent need for action was realized and has expedited the search for more robust alternative species to ensure sustainable silviculture in the area.</p><p>The determination of suitable tree species is based on the identification of regions whose climatic conditions in the recent past are similar to those that are to be expected in the forest district of Horn in the future. To characterize these conditions, we consider 19 bioclimatic variables that are derived from monthly temperature and rainfall values. Using downscaled CMIP6 projections with a spatial resolution of 2.5 minutes, we determine future conditions in Horn throughout the 21st century. By employing 20-year periods from 2021 to 2100 for the scenarios SSP1-26, SSP2-45, SSP3-70 and SSP5-85,  and comparing them to worldwide past climate conditions, we obtain corresponding bioclimatic regions for four future time slices until the end of the century. The Euclidian distance is applied as measure of similarity, effectively yielding similarity maps on a continuous scale. In order to account for the spatial variability within the forest district, this procedure is performed for the colder northwest and the warmer southeast of the area, individually seeking similar bioclimatic regions for each of these two subregions. Results point to Eastern Europe as well as the Po Valley in northern Italy as areas exhibiting the highest similarity to the future climate in this North-Eastern part of Austria.</p>


2019 ◽  
Vol 27 (2) ◽  
pp. 166-184 ◽  
Author(s):  
Maitane Erdozain ◽  
Erika C. Freeman ◽  
Camille Ouellet Dallaire ◽  
Sonja Teichert ◽  
Harry W. Nelson ◽  
...  

The Canadian boreal zone provides extractive goods and services (provisioning ecosystem services (PrES)) to domestic and global markets and makes a significant contribution to the Canadian economy. The intensity and location of these extractive activities, however, may positively or negatively affect the availability of other benefits that the Canadian and global society receive from the boreal. Where PrES compete, managing these activities along with their impacts to boreal ecosystems becomes a balancing act between the need for resource extraction and the continued availability of the other benefits from ecosystems. Management measures and policies are more likely to succeed if they are designed with foresight, which means accounting for how demand, a key driver of change in the boreal, may change in the future. To help this process, we present three divergent, yet plausible future scenarios based on the analysis of: (i) the capacity of the boreal to provide wood products, fossil fuels, metals and minerals, and hydropower and other renewables; (ii) past trends (1985–2015) and key events in the demand for these PrES; (iii) the interaction of demand for PrES with other drivers of change to the boreal zone; and (iv) the synergies and trade-offs between PrES. We find that historically and currently the capacity of the boreal to provide these PrES exceeds the amount currently supplied. However, the capacity of different PrES and location of extractive activities are spatially dispersed creating a spatial and temporal patchwork of associated risks to local ecosystem integrity and the supply of non-PrES. In addition, these scenarios suggest that the future of boreal PrES is very uncertain and highly dependent on how other drivers of change (namely governance and geopolitics, societal values and climate change) play out in the future. Given the spatial complexity, we find that the cumulative effect of these drivers (e.g., climate change) will determine what paths unfold for different areas of the boreal, and we conclude that careful consideration and planning must be given to ensure that the balance between PrES and non-PrES is maintained.


Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 61 ◽  
Author(s):  
Kleoniki Demertzi ◽  
Dimitris Papadimos ◽  
Vassilis Aschonitis ◽  
Dimitris Papamichail

This study proposes a simplistic model for assessing the hydroclimatic vulnerability of lakes/reservoirs (LRs) that preserve their steady-state conditions based on regulated superficial discharge (Qd) out of the LR drainage basin. The model is a modification of the Bracht-Flyr et al. method that was initially proposed for natural lakes in closed basins with no superficial discharge outside the basin (Qd = 0) and under water-limited environmental conditions {mean annual ratio of potential/reference evapotranspiration (ETo) versus rainfall (P) greater than 1}. In the proposed modified approach, an additional Qd function is included. The modified model is applied using as a case study the Oreastiada Lake, which is located inside the Kastoria basin in Greece. Six years of observed data of P, ETo, Qd, and lake topography were used to calibrate the modified model based on the current conditions. The calibrated model was also used to assess the future lake conditions based on the future climatic projections (mean conditions of 2061-2080) derived by 19 general circulation models (GCMs) for three cases of climate change (three cases of Representative Concentration Pathways: RCP2.6, RCP4.5 and RCP8.5). The modified method can be used as a diagnostic tool in water-limited environments for analyzing the superficial discharge changes of LRs under different climatic conditions and to support the design of new management strategies for mitigating the impact of climate change on (a) flooding conditions, (b) hydroelectric production, (c) irrigation/industrial/domestic use and (d) minimum ecological flows to downstream rivers.


2019 ◽  
Vol 89 (2) ◽  
pp. e01345 ◽  
Author(s):  
George Van Houtven ◽  
Jennifer Phelan ◽  
Christopher Clark ◽  
Robert D. Sabo ◽  
John Buckley ◽  
...  

Author(s):  
Dasaraden Mauree ◽  
Silvia Coccolo ◽  
Dasun Perera ◽  
Vahid Nik ◽  
Jean-Louis Scartezzini ◽  
...  

Building more energy efficient and sustainable urban areas that will both mitigate the effect of climate change and adapt for the future climate, requires the development new tools and methods that can help urban planners, architect and communities achieve this goal. In the current study, we designed a workflow that links different methodologies developed separately, to derive the energy consumption of a university school campus for the future. Three different scenarios for typical future years (2039, 2069, 2099) were run as well as a renovation scenario (Minergie-P). We analyse the impact of climate change on the heating and cooling demand of the buildings and determined the relevance of the accounting of the local climate in this particular context. The results from the simulations showed that in the future there will a constant decrease in the heating demand while for the cooling demand there will be a significant increase. It was further demonstrated that when the local climate was taken into account there was an even higher rise in the cooling demand but also that the proposed renovations were not sufficient to design resilient buildings. We then discuss the implication of this work on the simulation of building energy consumption at the neighbourhood scale and the impact of future local climate on energy system design. We finally give a few perspective regarding improved urban design and possible pathways for the future urban areas.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lander Van Tricht ◽  
Chloë Marie Paice ◽  
Oleg Rybak ◽  
Rysbek Satylkanov ◽  
Victor Popovnin ◽  
...  

The mean specific mass balance of a glacier represents the direct link between a glacier and the local climate. Hence, it is intensively monitored throughout the world. In the Kyrgyz Tien Shan, glaciers are of crucial importance with regard to water supply for the surrounding areas. It is therefore essential to know how these glaciers behave due to climate change and how they will evolve in the future. In the Soviet era, multiple glaciological monitoring programs were initiated but these were abandoned in the nineties. Recently, they have been re-established on several glaciers. In this study, a reconstruction of the mean specific mass balance of Bordu, Kara-Batkak and Sary-Tor glaciers is obtained using a surface energy mass balance model. The model is driven by temperature and precipitation data acquired by combining multiple datasets from meteorological stations in the vicinity of the glaciers and tree rings in the Kyrgyz Tien Shan between 1750 and 2020. Multi-annual mass balance measurements integrated over elevation bands of 100 m between 2013 and 2020 are used for calibration. A comparison with WGMS data for the second half of the 20th century is performed for Kara-Batkak glacier. The cumulative mass balances are also compared with geodetic mass balances reconstructed for different time periods. Generally, we find a close agreement, indicating a high confidence in the created mass balance series. The last 20 years show a negative mean specific mass balance except for 2008–2009 when a slightly positive mass balance was found. This indicates that the glaciers are currently in imbalance with the present climatic conditions in the area. For the reconstruction back to 1750, this study specifically highlights that it is essential to adapt the glacier geometry since the end of the Little Ice Age in order to not over- or underestimate the mean specific mass balance. The datasets created can be used to get a better insight into how climate change affects glaciers in the Inner Tien Shan and to model the future evolution of these glaciers as well as other glaciers in the region.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1657
Author(s):  
Chul-Hee Lim

Climate change has inherent multidisciplinary characteristics, and predicting the future of a single field of work has a limit. Therefore, this study proposes a water-centric nexus approach for the agriculture and forest sectors for improving the response to climate change in the Korean Peninsula. Two spatial models, i.e., Environmental Policy Integrated Climate and Integrated Valuation of Ecosystem Services and Tradeoffs, were used to assess the extent of changes in agricultural water demand, forest water supply, and their balance at the watershed level in the current and future climatic conditions. Climate changed has increased the agricultural water demand and forest water supply significantly in all future scenarios and periods. Comparing the results with RCP8.5 2070s and the baseline, the agricultural water demand and forest water supply increased by 35% and 28%, respectively. Water balance assessment at the main watershed level in the Korean Peninsula revealed that although most scenarios of the future water supply increases offset the demand growth, a risk to water balance exists in case of a low forest ratio or smaller watershed. For instance, the western plains, which are the granary regions of South and North Korea, indicate a higher risk than other areas. These results show that the land-use balance can be an essential factor in a water-centric adaptation to climate change. Ultimately, the water-centric nexus approach can make synergies by overcoming increasing water demands attributable to climate change.


2021 ◽  
Author(s):  
Andrew Speak ◽  
Leonardo Montagnani ◽  
Hilary Solly ◽  
Camilla Wellstein ◽  
Stefan Zerbe

Abstract Achieving urban sustainability goals, and improving the quality of life in cities, are aided by the careful selection of tree species for public green spaces. Numerous trade-offs and synergies are necessary to consider when selecting tree species for successful public green spaces. In this transdisciplinary research we consider the impacts of nine different tree planting scenarios, as modelled with i-Trees, in three piazzas of Bolzano, North Italy. The scenarios consider the opinions of the general public gathered from focused workshops and data collected via a purposefully created smartphone application. Shade provision and aesthetics were the primary factors that influenced citizen tree preferences. Scenarios which included larger tree species generally performed the best due to the greater provision of ecosystem services that arises with larger tree dimensions. Ecosystem disservices also increase with larger trees but can be minimised by careful species selection. Public participation in the planning of urban green spaces can be a beneficial activity which ensures new planning outputs will be well-received whilst providing opportunities for education of citizens about the multiple ecosystem services and disservices in urban contexts.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 126
Author(s):  
Lijuan Zhang ◽  
Lianqi Zhu ◽  
Yanhong Li ◽  
Wenbo Zhu ◽  
Yingyong Chen

Climate change has caused substantial shifts in the geographical distribution of many species. There is growing evidence that many species are migrating in response to climate change. Changes in the distribution of dominant tree species induced by climate change can have an impact not only on organisms such as epiphytes and understory vegetation, but also on the whole ecosystem. Cyclobalanopsis glauca is a dominant tree species in the mingled evergreen and deciduous broadleaf forests of China. Understanding their adaptive strategies against climate change is important for understanding the future community structure. We employed the Maxent framework to model current suitable habitats of C. glauca under current climate conditions and predicted it onto the climate scenarios for 2041–2060 and 2081–2100 using 315 occurrence data. Our results showed that annual precipitation was the most critical factor for the distribution of C. glauca. In the future, increasing precipitation would reduce the limitation of water on habitats, leading to an expansion of the distribution to a higher latitude and higher altitude. At the same time, there were habitat contractions at the junction of the Jiangxi and Fujian Provinces. This study can provide vital information for the management of C. glauca, and serve as a reminder for managers to protect C. glauca in the range contraction areas.


Sign in / Sign up

Export Citation Format

Share Document