scholarly journals Reconstruction of the Historical (1750–2020) Mass Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan, Kyrgyzstan

2021 ◽  
Vol 9 ◽  
Author(s):  
Lander Van Tricht ◽  
Chloë Marie Paice ◽  
Oleg Rybak ◽  
Rysbek Satylkanov ◽  
Victor Popovnin ◽  
...  

The mean specific mass balance of a glacier represents the direct link between a glacier and the local climate. Hence, it is intensively monitored throughout the world. In the Kyrgyz Tien Shan, glaciers are of crucial importance with regard to water supply for the surrounding areas. It is therefore essential to know how these glaciers behave due to climate change and how they will evolve in the future. In the Soviet era, multiple glaciological monitoring programs were initiated but these were abandoned in the nineties. Recently, they have been re-established on several glaciers. In this study, a reconstruction of the mean specific mass balance of Bordu, Kara-Batkak and Sary-Tor glaciers is obtained using a surface energy mass balance model. The model is driven by temperature and precipitation data acquired by combining multiple datasets from meteorological stations in the vicinity of the glaciers and tree rings in the Kyrgyz Tien Shan between 1750 and 2020. Multi-annual mass balance measurements integrated over elevation bands of 100 m between 2013 and 2020 are used for calibration. A comparison with WGMS data for the second half of the 20th century is performed for Kara-Batkak glacier. The cumulative mass balances are also compared with geodetic mass balances reconstructed for different time periods. Generally, we find a close agreement, indicating a high confidence in the created mass balance series. The last 20 years show a negative mean specific mass balance except for 2008–2009 when a slightly positive mass balance was found. This indicates that the glaciers are currently in imbalance with the present climatic conditions in the area. For the reconstruction back to 1750, this study specifically highlights that it is essential to adapt the glacier geometry since the end of the Little Ice Age in order to not over- or underestimate the mean specific mass balance. The datasets created can be used to get a better insight into how climate change affects glaciers in the Inner Tien Shan and to model the future evolution of these glaciers as well as other glaciers in the region.

2011 ◽  
Vol 5 (2) ◽  
pp. 1055-1088
Author(s):  
G. Aðalgeirsdóttir ◽  
S. Guðmundsson ◽  
H. Björnsson ◽  
F. Pálsson ◽  
T. Jóhannesson ◽  
...  

Abstract. The Little Ice Age maximum extent of glaciers in Iceland was reached about 1890 AD and most glaciers in the country have retreated during the 20th century. A model for the surface mass balance and the flow of glaciers is used to reconstruct the 20th century retreat history of Hoffellsjökull, a south-flowing outlet glacier of Vatnajökull, which is located close to the southeast coast of Iceland. The bedrock topography was surveyed with radio-echo soundings in 2001. A wealth of data are available to force and constrain the model, e.g. surface elevation maps from ~1890, 1936, 1946, 1986, 2001, 2008 and 2010, mass balance observations conducted in 1936–1938 and after 2001, energy balance measurements after 2001, and glacier surface velocity derived by DGPS and correlation of SPOT5 images. The 21% volume loss of this glacier in the period 1895–2010 is realistically simulated with the model. After calibration of the model with past observations, it is used to simulate the future response of the glacier during the 21st century. The mass balance model was forced with an ensemble of temperature and precipitation scenarios from a study of the effect of climate change on energy production in the Nordic countries (the CES project). If the average climate of 2000–2009 is maintained into the future, the volume of the glacier is projected to be reduced by 30% with respect to the present at the end of this century, and the glacier will almost disappear if the climate warms as suggested by most of the climate change scenarios. Runoff from the glacier is predicted to increase for the next 30–40 years and decrease after that as a consequence of the diminishing ice-covered area.


1997 ◽  
Vol 24 ◽  
pp. 203-210 ◽  
Author(s):  
Kevin M. Fleming ◽  
Julian A. Dowdeswell ◽  
Johannes Oerlemans

An energy-balance model is used to calculate mass balance and equilibrium-line altitudes (ELAs) on two northwest Spitsbergen glaciers, Austre Brøggerbreen and Midre Lovénbreen, whose mass balances are at present negative, and for which greater than 20 year records of mass-balance data are available. The model takes meteorological data, ice-mass area distribution with altitude, and solar radiation as inputs. Modelling uses mean daily meteorological data from a nearby weather station, adjusted for altitude. Average net balances modelled for 1980–89 using models tuned to the decade’s average were –0.44 and –0.47 m w.e. for Lovénbreen and Brøggerbreen, respectively, compared with the measured averages of –0.27 and –0.36 m. Sensitivity tests on glacier response to greenhouse warming predict a net balance change of –0.61 m year–1 per °C temperature rise relative to today, and a rise in ELA of 90 m °C–1. Modelling of Little lee Age conditions in Spitsbergen suggests that a 0.6°C cooling or a precipitation increase of 23% would yield zero net mass balance for Lovénbreen and that further cooling would increase net balance by 0.30 m year–1 °C–1. Set in the context of similar modelling of southern Norwegian, Alpine and Greenland ice masses, these results support the suggestion that glaciers with a maritime influence (i.e. higher accumulation) are most sensitive to climate change, implying a gradient towards decreasing sensitivity as accumulation decreases eastward and with altitude in Svalbard.


Geosciences ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 272
Author(s):  
Stephanie Suzanne Weidemann ◽  
Jorge Arigony-Neto ◽  
Ricardo Jaña ◽  
Guilherme Netto ◽  
Inti Gonzalez ◽  
...  

The Cordillera Darwin Icefield loses mass at a similar rate as the Northern and Southern Patagonian Icefields, showing contrasting individual glacier responses, particularly between the north-facing and south-facing glaciers, which are subject to changing climate conditions. Detailed investigations of climatic mass balance processes on recent glacier behavior are not available for glaciers of the Cordillera Darwin Icefield and surrounding icefields. We therefore applied the coupled snow and ice energy and mass balance model in Python (COSIPY) to assess recent surface energy and mass balance variability for the Schiaparelli Glacier at the Monte Sarmiento Massif. We further used COSIPY to simulate steady-state glacier conditions during the Little Ice Age using information of moraine systems and glacier areal extent. The model is driven by downscaled 6-hourly atmospheric data and high resolution precipitation fields, obtained by using an analytical orographic precipitation model. Precipitation and air temperature offsets to present-day climate were considered to reconstruct climatic conditions during the Little Ice Age. A glacier-wide mean annual climatic mass balance of −1.8 ± 0.36 m w.e. a − 1 was simulated between between April 2000 and March 2017. An air temperature decrease between −0.9 ° C and −1.7 ° C in combination with a precipitation offset of up to +60% to recent climate conditions is necessary to simulate steady-state conditions for Schiaparelli Glacier in 1870.


2014 ◽  
Vol 60 (224) ◽  
pp. 1155-1168 ◽  
Author(s):  
Harry Zekollari ◽  
Johannes Jakob Fürst ◽  
Philippe Huybrechts

AbstractWe use a 3-D higher-order glacier flow model for Vadret da Morteratsch, Engadin, Switzerland, to simulate its strong retreat since the end of the Little Ice Age (LIA) and to project its future disintegration under a warming climate. The flow model, coupled to a 2-D energy-balance model, is initialized with the known maximum glacier extent during the LIA and subsequently forced with mean monthly precipitation and temperature records. To correctly reproduce the observed retreat of the glacier front for the period 1864–2010, additional mass-balance perturbations are required to account for uncertainties in the initial state, the mass-balance model and climate variations not captured by the ambient meteorological records. Changes in glacier volume and area are in good agreement with additional information from historical topographic maps. Under constant 2001–10 climate conditions, a strong retreat and mass loss continue and Vadret da Morteratsch disconnects from its main tributary, Vadret Pers, before 2020. The future glacier evolution is analysed in detail to understand the timing and rate of retreat, and to assess the role of ice dynamics. Assuming a linearly increasing warming of >3°C by 2100, only isolated and largely stagnant ice patches remain at high elevation.


2011 ◽  
Vol 5 (1) ◽  
pp. 95-129 ◽  
Author(s):  
F. Pithan

Abstract. The impact of climate change on Himalaya mountain glaciers is increasingly subject of public and scientific debate. However, observational data are sparse and important knowledge gaps remain in the understanding of what drives changes in these glaciers' mass balances. The present study investigates the glacier regime on Chhota Shigri, a benchmark glacier for the observation of climate change in the monsoon-arid transition zone of Western Himalaya. Results of an energy-balance model driven by reanalysis data and the observed mass balances from three years on 50 m altitude intervals across the glacier display a correlation coefficient of 0.974. Contrary to prior assumptions, monsoon precipitation accounts for a quarter to a third of total accumulation. It has an additional importance because it lowers the surface albedo during the ablation season. Results confirm radiation as the main energy source for melt on Himalaya glaciers. Latent heat flux acts as an important energy sink in the pre-monsoon season. Mass balance is most sensitive to changes in atmospheric humidity, changing by 900 mm w.e. per 10% change in humidity. Temperature sensitivity is 220 mm w.e.K−1. Model results using 21st century anomalies from a regional climate model based on the SRES A2 scenario suggest that a monsoon increase might offset the effect of warming.


1997 ◽  
Vol 24 ◽  
pp. 203-210 ◽  
Author(s):  
Kevin M. Fleming ◽  
Julian A. Dowdeswell ◽  
Johannes Oerlemans

An energy-balance model is used to calculate mass balance and equilibrium-line altitudes (ELAs) on two northwest Spitsbergen glaciers, Austre Brøggerbreen and Midre Lovénbreen, whose mass balances are at present negative, and for which greater than 20 year records of mass-balance data are available. The model takes meteorological data, ice-mass area distribution with altitude, and solar radiation as inputs. Modelling uses mean daily meteorological data from a nearby weather station, adjusted for altitude. Average net balances modelled for 1980–89 using models tuned to the decade’s average were –0.44 and –0.47 m w.e. for Lovénbreen and Brøggerbreen, respectively, compared with the measured averages of –0.27 and –0.36 m. Sensitivity tests on glacier response to greenhouse warming predict a net balance change of –0.61 m year–1 per °C temperature rise relative to today, and a rise in ELA of 90 m °C–1. Modelling of Little lee Age conditions in Spitsbergen suggests that a 0.6°C cooling or a precipitation increase of 23% would yield zero net mass balance for Lovénbreen and that further cooling would increase net balance by 0.30 m year–1 °C–1. Set in the context of similar modelling of southern Norwegian, Alpine and Greenland ice masses, these results support the suggestion that glaciers with a maritime influence (i.e. higher accumulation) are most sensitive to climate change, implying a gradient towards decreasing sensitivity as accumulation decreases eastward and with altitude in Svalbard.


2013 ◽  
Vol 17 (9) ◽  
pp. 3661-3677 ◽  
Author(s):  
A. F. Lutz ◽  
W. W. Immerzeel ◽  
A. Gobiet ◽  
F. Pellicciotti ◽  
M. F. P. Bierkens

Abstract. Central Asian water resources largely depend on melt water generated in the Pamir and Tien Shan mountain ranges. To estimate future water availability in this region, it is necessary to use climate projections to estimate the future glacier extent and volume. In this study, we evaluate the impact of uncertainty in climate change projections on the future glacier extent in the Amu and Syr Darya river basins. To this end we use the latest climate change projections generated for the upcoming IPCC report (CMIP5) and, for comparison, projections used in the fourth IPCC assessment (CMIP3). With these projections we force a regionalized glacier mass balance model, and estimate changes in the basins' glacier extent as a function of the glacier size distribution in the basins and projected temperature and precipitation. This glacier mass balance model is specifically developed for implementation in large scale hydrological models, where the spatial resolution does not allow for simulating individual glaciers and data scarcity is an issue. Although the CMIP5 ensemble results in greater regional warming than the CMIP3 ensemble and the range in projections for temperature as well as precipitation is wider for the CMIP5 than for the CMIP3, the spread in projections of future glacier extent in Central Asia is similar for both ensembles. This is because differences in temperature rise are small during periods of maximum melt (July–September) while differences in precipitation change are small during the period of maximum accumulation (October–February). However, the model uncertainty due to parameter uncertainty is high, and has roughly the same importance as uncertainty in the climate projections. Uncertainty about the size of the decline in glacier extent remains large, making estimates of future Central Asian glacier evolution and downstream water availability uncertain.


2010 ◽  
Vol 4 (2) ◽  
pp. 737-766 ◽  
Author(s):  
F. Paul

Abstract. Glaciers are widely recognized as unique demonstration objects for climate change impacts, mostly due to the strong change of glacier length in response to small climatic changes. However, glacier mass balance as the direct response to the annual atmospheric conditions can be better interpreted in meteorological terms. When the climatic signal is deduced from long-term mass balance data, changes in glacier geometry (i.e. surface extent and elevation) must be considered as such adjustments form an essential part of the glacier reaction to new climatic conditions. In this study, a set of modeling experiments is performed to assess the influence of changes in glacier geometry on mass balance for constant climatic conditions. The calculations are based on a simplified distributed energy/mass balance model in combination with information on glacier extent and surface elevation for the years 1850 and 1973/1985 for a larger sample of glaciers in the Swiss Alps. The results reveal that about 50–70% of the glacier reaction to climate change (here a one degree increase in temperature) is "hidden" in the geometric adjustment, while only 30–50% can be measured as the long-term mean mass balance. Thereby, changes in glacier extent alone have an even stronger effect, but they are partly compensated for by a lowered surface elevation which gives on average a slightly more negative balance despite an increase of topographic shading. In view of several additional reinforcement feedbacks that are observed in periods of strong glacier decline, it seems that the climatic interpretation of mass balance data is also rather complex.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yanjun Che ◽  
Mingjun Zhang ◽  
Zhongqin Li ◽  
Yanqiang Wei ◽  
Zhuotong Nan ◽  
...  

Abstract Energy exchanges between atmosphere and glacier surface control the net energy available for snow and ice melt. Based on the meteorological records in Urumqi River Glacier No.1 (URGN1) in the Chinese Tien Shan during the period of 2012–2015, an energy-mass balance model was run to assess the sensitivity of glacier mass balance to air temperature (T), precipitation (P), incoming shortwave radiation (Sin), relative humidity (RH), and wind speed (u) in the URGN1, respectively. The results showed that the glacier melting was mainly controlled by the net shortwave radiation. The glacier mass balance was very sensitivity to albedo for snow and the time scale determining how long the snow albedo approaches the albedo for firn after a snowfall. The net annual mass balance of URGN1 was decreased by 0.44 m w.e. when increased by 1 K in air temperature, while it was increased 0.30 m w.e. when decreased by 1 K. The net total mass balance increased by 0.55 m w.e. when increased precipitation by 10%, while it was decreased by 0.61 m w.e. when decreased precipitation by 10%. We also found that the change in glacier mass balance was non-linear when increased or decreased input condition of climate change. The sensitivity of mass balance to increase in Sin, u, and RH were at −0.015 m w.e.%−1, −0.020 m w.e.%−1, and −0.018 m w.e.%−1, respectively, while they were at 0.012 m w.e.%−1, 0.027 m w.e.%−1, and 0.017 m w.e.%−1 when decreasing in those conditions, respectively. In addition, the simulations of coupled perturbation for temperature and precipitation indicated that the precipitation needed to increase by 23% could justly compensate to the additional mass loss due to increase by 1 K in air temperature. We also found that the sensitivities of glacier mass balance in response to climate change were different in different mountain ranges, which were mainly resulted from the discrepancies in the ratio of snowfall to precipitation during the ablation season, the amount of melt energy during the ablation season, and precipitation seasonality in the different local regions.


2002 ◽  
Vol 48 (163) ◽  
pp. 505-518 ◽  
Author(s):  
E.J. (Lisette) Klok ◽  
Johannes Oerlemans

AbstractTo investigate the spatial distribution of the energy- and mass-balance fluxes of a glacier, a two-dimensional mass-balance model was developed and applied to Morteratschgletscher, Switzerland. The model is driven by meteorological input from four synoptic weather stations located in the vicinity of Morteratschgletscher. The model results were compared to observations made on the glacier. The calculated mean specific mass balance is −0.47 m w.e. for 1999, and 0.23 m w.e. for 2000. Net shortwave radiation shows a minimum at around 3350 m a.s.l., due to the effects of shading, slope, aspect, reflection from the slopes, and obstruction of the sky. Ignoring these effects results in a 37% increase in the annual incoming shortwave radiation on the glacier, causing 0.34 m w.e. more ablation. A 1°C change in the air temperature results in a shift of 0.67 m w.e. in the mean specific mass balance, while altering the precipitation by 10% causes a change of 0.17 m w.e.


Sign in / Sign up

Export Citation Format

Share Document