scholarly journals Mapping QTLs for phenotypic and morpho-physiological traits related to grain yield under late sown conditions in wheat (Triticum aestivum L.)

2021 ◽  
Author(s):  
Yaswant Kumar Pankaj ◽  
Lalit Pal ◽  
Ragupathi Nagarajan ◽  
Kulvinder Singh Gill ◽  
Vishnu Kumar ◽  
...  

The elevating temperature makes heat stress one of the major issues for wheat production globally. To elucidate genetic basis and map heat tolerance traits, a set of 166 doubled haploid lines (DHLs) derived from the cross between PBW3438/IC252874 was used. The population was evaluated under Normal sown (NS) and late sown (LS) conditions, by exposing to heat stress during rabi season. The canopy temperature (CT) showed positive correlations with grain yield, whereas Soil plant analysis development (SPAD) was not significantly correlated and associated with GY in both the normal and late sown conditions. Composite interval mapping (CIM) identified total 12 Quantitative trait loci (QTLs) viz., 2 (Normal sown), 10 (late sown) mapped on linkage groups 1A, 1D, 2B, 2D, 3B, 4D, 5B, and 6D, during both the crop seasons 2017-18 and 2018-19. Combining the results of these QTLs revealed a major stable QTL for grain yield (GY) on chromosome 3B with 11.84% to 21.24% explaining phenotypic variance under both sowing conditions. QTL for CT and SPAD was detected on chromosome 1A while QTL for GY on chromosomes 3B and 5B. The identified QTLs in the genomic regions could be targeted for genetic improvement and marker-assisted selection for heat tolerance in wheat. The tools like SPAD and CT could be exploited to screen a large number of breeding lines.

Author(s):  
Elfadil Mohamed Elbashier ◽  
Elfadil Mohammed Eltayeb Elbashier ◽  
Siddig Esa Idris2 ◽  
Wuletaw Tadesse ◽  
Izzat S.A. Tahir ◽  
...  

PurposeThe purpose of this paper was to study the genetic variability, heritability, heat tolerance indices and phenotypic and genotypic correlation studies for traits of 250 elite International Center for Agricultural Research in the Dry Areas (ICARDA) bread wheat genotypes under high temperature in Wad Medani, Center in Sudan.Design/methodology/approachBread wheat is an important food on a global level and is used in the form of different products. High temperature associated with climate change is considered to be a detrimental stress in the future on world wheat production. A total of 10,250 bread wheat genotypes selected from different advanced yield trials introduction from ICARDA and three checks including were grown in two sowing dates (SODs) (1st and 2nd) 1st SOD heat stress and 2nd SOD non-stress at the Gezira Research Farm, of the Agricultural Research Corporation, Wad Medani, Sudan.FindingsAn alpha lattice design with two replications was used to assess the presence of phenotypic and genotypic variations of different traits, indices for heat stress and heat tolerance for 20 top genotypes and phenotypic and genotypic correlations. Analysis of variance revealed significant differences among genotypes for all the characters. A wide range, 944-4,016 kg/ha in the first SOD and 1,192-5,120 kg/ha in the second SOD, was found in grain yield. The average yield on the first SOD is less than that of the secondnd SOD by 717.7 kg/ha, as the maximum and minimum temperatures were reduced by 3ºC each in the second SOD when compared to the first SOD of the critical stage of crop growth shown.Research limitations/implicationsSimilar wide ranges were found in all morpho-physiological traits studied. High heritability in a broad sense was estimated for days to heading and maturity. Moderate heritability estimates found for grain yield ranged from 44 to 63.6 per cent, biomass ranged from 37.8 to 49.1 per cent and canopy temperature (CT) after heading ranged from 44.2 to 48 per cent for the first and secondnd SODs. The top 20 genotypes are better than the better check in the two sowing dates and seven genotypes (248, 139, 143, 27, 67, 192 and 152) were produced high grain yield under both 1st SOD and 2nd SOD.Practical implicationsThe same genotypes in addition to Imam (check) showed smaller tolerance (TOL) values, indicating that these genotypes had a smaller yield reduction under heat-stressed conditions and that they showed a higher heat stress susceptibility index (SSI). A smaller TOL and a higher SSI are favored. Both phenotypic and genotypic correlations of grain yield were positively and significantly correlated with biomass, harvest index, number of spikes/m2, number of seeds/spike and days to heading and maturity in both SODs and negatively and significantly correlated with canopy temperature before and after heading in both SODs.Originality/valueGenetic variations, heritability, heat tolerance indices and correlation studies for traits of bread wheat genotypes under high temperature


2012 ◽  
Vol 7 (6) ◽  
pp. 1084-1091 ◽  
Author(s):  
Krisztina Balla ◽  
Ildikó Karsai ◽  
Tibor Kiss ◽  
Szilvia Bencze ◽  
Zoltán Bedő ◽  
...  

AbstractBreeding of new winter wheat cultivars with good heat tolerance requires better understanding of the genetic background of heat tolerance. In the present work the effect of heat stress on the 6th day after heading was investigated in a doubled haploid (DH) population arising from a cross between heat-sensitive (Plainsman V) and heat-tolerant (Mv Magma) cultivars. Averaged over the population, heat stress was found to result in a significant reduction in biomass, grain yield and grain number per plant, and in thousand-kernel weight (TKW) and harvest index. High temperature had the greatest effect on the grain yield, with a drop of 36.2% compared with the control. This could be attributed jointly to significant reductions in the TKW of the main ear and in the grain number of the side tillers. The relationship between the yield parameters was confirmed by the positive correlations obtained for the lines in the population. The diverse levels of heat tolerance in the different lines were confirmed by the significant differences in the reduction in the chlorophyll content (SPAD index) of the flag-leaves and in yield parameters. The changes in yield components in stress condition, however, can be still the most effective tools for heat stress evaluation.


2013 ◽  
Vol 40 (1) ◽  
pp. 14 ◽  
Author(s):  
Greg J. Rebetzke ◽  
Allan R. Rattey ◽  
Graham D. Farquhar ◽  
Richard A. Richards ◽  
Anthony (Tony) G. Condon

Stomata are the site of CO2 exchange for water in a leaf. Variation in stomatal control offers promise in genetic improvement of transpiration and photosynthetic rates to improve wheat performance. However, techniques for estimating stomatal conductance (SC) are slow, limiting potential for efficient measurement and genetic modification of this trait. Genotypic variation in canopy temperature (CT) and leaf porosity (LP), as surrogates for SC, were assessed in three wheat mapping populations grown under well-watered conditions. The range and resulting genetic variance were large but not always repeatable across days and years for CT and LP alike. Leaf-to-leaf variation was large for LP, reducing heritability to near zero on a single-leaf basis. Replication across dates and years increased line-mean heritability to ~75% for both CT and LP. Across sampling dates and populations, CT showed a large, additive genetic correlation with LP (rg = –0.67 to –0.83) as expected. Genetic increases in pre-flowering CT were associated with reduced final plant height and both increased harvest index and grain yield but were uncorrelated with aerial biomass. In contrast, post-flowering, cooler canopies were associated with greater aerial biomass and increased grain number and yield. A multi-environment QTL analysis identified up to 16 and 15 genomic regions for CT and LP, respectively, across all three populations. Several of the LP and CT QTL co-located with known QTL for plant height and phenological development and intervals for many of the CT and LP quantitative trait loci (QTL) overlapped, supporting a common genetic basis for the two traits. Notably, both Rht-B1b and Rht-D1b dwarfing alleles were paradoxically positive for LP and CT (i.e. semi-dwarfs had higher stomatal conductance but warmer canopies) highlighting the issue of translation from leaf to canopy in screening for greater transpiration. The strong requirement for repeated assessment of SC suggests the more rapid CT assessment may be of greater value for indirect screening of high or low SC among large numbers of early-generation breeding lines. However, account must be taken of variation in development and canopy architecture when interpreting performance and selecting breeding lines on the basis of CT.


2018 ◽  
Vol 19 (8) ◽  
pp. 2166 ◽  
Author(s):  
Pronob Paul ◽  
Srinivasan Samineni ◽  
Mahendar Thudi ◽  
Sobhan Sajja ◽  
Abhishek Rathore ◽  
...  

Chickpea (Cicer arietinum L.), a cool-season legume, is increasingly affected by heat-stress at reproductive stage due to changes in global climatic conditions and cropping systems. Identifying quantitative trait loci (QTLs) for heat tolerance may facilitate breeding for heat tolerant varieties. The present study was aimed at identifying QTLs associated with heat tolerance in chickpea using 292 F8-9 recombinant inbred lines (RILs) developed from the cross ICC 4567 (heat sensitive) × ICC 15614 (heat tolerant). Phenotyping of RILs was undertaken for two heat-stress (late sown) and one non-stress (normal sown) environments. A genetic map spanning 529.11 cM and comprising 271 genotyping by sequencing (GBS) based single nucleotide polymorphism (SNP) markers was constructed. Composite interval mapping (CIM) analysis revealed two consistent genomic regions harbouring four QTLs each on CaLG05 and CaLG06. Four major QTLs for number of filled pods per plot (FPod), total number of seeds per plot (TS), grain yield per plot (GY) and % pod setting (%PodSet), located in the CaLG05 genomic region, were found to have cumulative phenotypic variation of above 50%. Nineteen pairs of epistatic QTLs showed significant epistatic effect, and non-significant QTL × environment interaction effect, except for harvest index (HI) and biomass (BM). A total of 25 putative candidate genes for heat-stress were identified in the two major genomic regions. This is the first report on QTLs for heat-stress response in chickpea. The markers linked to the above mentioned four major QTLs can facilitate marker-assisted breeding for heat tolerance in chickpea.


2020 ◽  
Author(s):  
Aditi Bhandari ◽  
Nitika Sandhu ◽  
Jérôme Bartholome ◽  
Tuong-Vi Cao-Hamadoun ◽  
Nourollah Ahmadi ◽  
...  

Abstract Background Reproductive-stage drought stress is a major impediment to rice production globally. Conventional and marker-assisted breeding strategies for developing drought tolerant rice varieties are being optimized by mining and exploiting adaptive traits, genetic diversity; identifying the alleles and understanding their interactions with genetic backgrounds for contributing to drought tolerance. Field experiments were conducted in this study to identify marker-trait associations (MTAs) involved in response to yield under reproductive-stage drought. A diverse set of 280 indica-aus accessions was phenotyped for grain yield and nine yield-related traits under normal condition and under two managed drought environments. The accessions were genotyped with 215,250 single nucleotide polymorphism markers. Results The study identified a total of 220 significant MTAs and candidate gene analysis within 200kb window centred from GWAS identified SNP peaks detected these MTAs within/ in close proximity to 47 genes, 4 earlier reported major grain yield QTLs and 8 novel QTLs for 10 traits. The significant MTAs were majorly located on chromosomes 1, 2, 5, 6, 11 and 12 and the percent phenotypic variance captured for these traits ranged from 5 to 88%. The significant positive correlation of grain yield with yield-related traits, except flowering time, observed under different environments point towards their contribution in improving rice yield under drought. Seven promising accessions were identified for use in future genomics-assisted breeding program targeting grain yield improvement under drought. Conclusion These results provide a promising insight into the complex-genetic architecture of grain yield under reproductive-stage drought under different environments. Validation of major genomic regions reported in the study can be effectively used to develop drought tolerant varieties following marker-assisted selection as well as to identify genes and understanding the associated physiological mechanisms.


Author(s):  
Amrita Kumari ◽  
R. D. Ranjan ◽  
Chandan Roy ◽  
Awadesh Kumar Pal ◽  
S. Kumar

Heat stress, particularly the stress appears at the time of flowering to grain filling stages causing severe yield loss in wheat. Heat tolerance is complex phenomena that include adjustment in morphological, physiological and biochemical traits of the crop. Present investigation was carried out to understand the effect of terminal heat stress on different traits of wheat. The experiment was conducted in three dates of sowing as timely sown, late sown and very late sown to expose the crop to heat stress at later stages of the crop growth. Significant genetic variations for all the traits evaluated under three conditions indicated the presence of variability for the traits. Trait association analysis revealed that flag leaf chlorophyll content and MSI at seedling stage; MDA at reproductive stage had direct relationship with grain yield. While under very late sown condition MDA and RWC at seedling stages were found to be highly correlated with grain yield. It indicates that MDA, RWC at seedling stage and days to booting, days to milking plays important role in very late sown condition that can be used as selection criteria in breeding programme.


2020 ◽  
Vol 47 (5) ◽  
pp. 440 ◽  
Author(s):  
Syed Adeel Zafar ◽  
Amjad Hameed ◽  
Muhammad Ashraf ◽  
Abdus Salam Khan ◽  
Zia-ul- Qamar ◽  
...  

Climatic variations have increased the occurrence of heat stress during critical growth stages, which negatively affects grain yield in rice. Plants adapt to harsh environments, and particularly high-temperature stress, by regulating their physiological and biochemical processes, which are key tolerance mechanisms. The identification of heat-tolerant rice genotypes and reliable selection indices are crucial for rice improvement programs. Here, we evaluated the response of a rice mutant population for high-temperature stress at the seedling and reproductive stages based on agronomic, physiological and molecular indices. Estimates of variance components revealed significant differences (P < 0.001) among genotypes, treatments and their interactions for almost all traits. The principal component analysis showed significant diversity among genotypes and traits under high-temperature stress. The mutant HTT-121 was identified as the most heat-tolerant mutant with higher grain yield, panicle fertility, cell membrane thermo-stability (CMTS) and antioxidant enzyme levels under heat stress. Various seedling-based morpho-physiological traits (leaf fresh weight, relative water contents, malondialdehyde, CMTS) and biochemical traits (superoxide dismutase, catalase and hydrogen peroxide) explained variations in grain yield that could be used as selection indices for heat tolerance in rice during early growth. Notably, heat-sensitive mutants accumulated reactive oxygen species, reduced catalase activity and upregulated OsSRFP1 expression under heat stress, suggesting their key roles in regulating heat tolerance in rice. The heat-tolerant mutants identified in this study could be used in breeding programs and to develop mapping populations to unravel the underlying genetic architecture for heat-stress adaptability.


2011 ◽  
Vol 3 (4) ◽  
pp. 129-133
Author(s):  
Supriyo CHAKRABORTY ◽  
Sheng-Chu WANG ◽  
Zhao-Bang ZENG

Polygenes (QTLs) for grain yield were mapped on rice chromosomes under two moisture stress environments by multiple interval mapping (MIM) method in a double haploid (DH) population derived from a cross between a deep-rooted japonica and a shallow-rooted indica genotype. In environment 1 (E1), the MIM detected a total of six QTLs for grain yield on chromosomes-two QTLs on chromosome 1 and four QTLs on chromosome 5 along with one additive x additive epistasis. But in environment 2 (E2), the MIM detected five QTLs for grain yield on two chromosomes-three QTLs on chromosome 1 and two QTLs on chromosome 7. One common QTL on chromosome 1 flanked by the markers RG109-ME1014 was detected in both the environments, although the other detected QTLs differed between environments. The magnitude of QTL effect, percent genetic variance and percent phenotypic variance explained by each QTL was also estimated in both environments. The common QTL explained about 26.05 and 13.93% of genetic variance in E1 and E2, respectively. Estimated broad sense heritability for grain yield was 48.01 in E1 and 25.27% in E2.


Sign in / Sign up

Export Citation Format

Share Document