scholarly journals Molecular Mapping of QTLs for Heat Tolerance in Chickpea

2018 ◽  
Vol 19 (8) ◽  
pp. 2166 ◽  
Author(s):  
Pronob Paul ◽  
Srinivasan Samineni ◽  
Mahendar Thudi ◽  
Sobhan Sajja ◽  
Abhishek Rathore ◽  
...  

Chickpea (Cicer arietinum L.), a cool-season legume, is increasingly affected by heat-stress at reproductive stage due to changes in global climatic conditions and cropping systems. Identifying quantitative trait loci (QTLs) for heat tolerance may facilitate breeding for heat tolerant varieties. The present study was aimed at identifying QTLs associated with heat tolerance in chickpea using 292 F8-9 recombinant inbred lines (RILs) developed from the cross ICC 4567 (heat sensitive) × ICC 15614 (heat tolerant). Phenotyping of RILs was undertaken for two heat-stress (late sown) and one non-stress (normal sown) environments. A genetic map spanning 529.11 cM and comprising 271 genotyping by sequencing (GBS) based single nucleotide polymorphism (SNP) markers was constructed. Composite interval mapping (CIM) analysis revealed two consistent genomic regions harbouring four QTLs each on CaLG05 and CaLG06. Four major QTLs for number of filled pods per plot (FPod), total number of seeds per plot (TS), grain yield per plot (GY) and % pod setting (%PodSet), located in the CaLG05 genomic region, were found to have cumulative phenotypic variation of above 50%. Nineteen pairs of epistatic QTLs showed significant epistatic effect, and non-significant QTL × environment interaction effect, except for harvest index (HI) and biomass (BM). A total of 25 putative candidate genes for heat-stress were identified in the two major genomic regions. This is the first report on QTLs for heat-stress response in chickpea. The markers linked to the above mentioned four major QTLs can facilitate marker-assisted breeding for heat tolerance in chickpea.

2021 ◽  
Author(s):  
Yaswant Kumar Pankaj ◽  
Lalit Pal ◽  
Ragupathi Nagarajan ◽  
Kulvinder Singh Gill ◽  
Vishnu Kumar ◽  
...  

The elevating temperature makes heat stress one of the major issues for wheat production globally. To elucidate genetic basis and map heat tolerance traits, a set of 166 doubled haploid lines (DHLs) derived from the cross between PBW3438/IC252874 was used. The population was evaluated under Normal sown (NS) and late sown (LS) conditions, by exposing to heat stress during rabi season. The canopy temperature (CT) showed positive correlations with grain yield, whereas Soil plant analysis development (SPAD) was not significantly correlated and associated with GY in both the normal and late sown conditions. Composite interval mapping (CIM) identified total 12 Quantitative trait loci (QTLs) viz., 2 (Normal sown), 10 (late sown) mapped on linkage groups 1A, 1D, 2B, 2D, 3B, 4D, 5B, and 6D, during both the crop seasons 2017-18 and 2018-19. Combining the results of these QTLs revealed a major stable QTL for grain yield (GY) on chromosome 3B with 11.84% to 21.24% explaining phenotypic variance under both sowing conditions. QTL for CT and SPAD was detected on chromosome 1A while QTL for GY on chromosomes 3B and 5B. The identified QTLs in the genomic regions could be targeted for genetic improvement and marker-assisted selection for heat tolerance in wheat. The tools like SPAD and CT could be exploited to screen a large number of breeding lines.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0254957
Author(s):  
Ashutosh Kushwah ◽  
Dharminder Bhatia ◽  
Inderjit Singh ◽  
Mahendar Thudi ◽  
Gurpreet Singh ◽  
...  

Heat stress during reproductive stages has been leading to significant yield losses in chickpea (Cicer arietinum L.). With an aim of identifying the genomic regions or QTLs responsible for heat tolerance, 187 F8 recombinant inbred lines (RILs) derived from the cross GPF 2 (heat tolerant) × ILWC 292 (heat sensitive) were evaluated under late-sown irrigated (January-May) and timely-sown irrigated environments (November-April) at Ludhiana and Faridkot in Punjab, India for 13 heat tolerance related traits. The pooled ANOVA for both locations for the traits namely days to germination (DG), days to flowering initiation (DFI), days to 50% flowering (DFF), days to 100% flowering (DHF), plant height (PH), pods per plant (NPP), biomass (BIO), grain yield (YLD), 100-seed weight (HSW), harvest index (HI), membrane permeability index (MPI), relative leaf water content (RLWC) and pollen viability (PV)) showed a highly significant difference in RILs. The phenotyping data coupled with the genetic map comprising of 1365 ddRAD-Seq based SNP markers were used for identifying the QTLs for heat tolerance. Composite interval mapping provided a total of 28 and 23 QTLs, respectively at Ludhiana and Faridkot locations. Of these, 13 consensus QTLs for DG, DFI, DFF, DHF, PH, YLD, and MPI have been identified at both locations. Four QTL clusters containing QTLs for multiple traits were identified on the same genomic region at both locations. Stable QTLs for days to flowering can be one of the major factors for providing heat tolerance as early flowering has an advantage of more seed setting due to a comparatively longer reproductive period. Identified QTLs can be used in genomics-assisted breeding to develop heat stress-tolerant high yielding chickpea cultivars.


2021 ◽  
Author(s):  
Liu Jin ◽  
Xiaoding Ma ◽  
Huiying Zhou ◽  
Shuhui Li ◽  
Di Cui ◽  
...  

Abstract Climate change has a negative effect on rice production and food security. High temperature stress is a major obstacle and can significantly reduce yield. A set of recombinant inbred lines (RILs) derived from the cross between Longdao5 (heat-sensitive) and Zhongyouzao8 (heat-tolerant) was used in the identification of heat tolerant QTL. Spikelet fertility (SF) and heat tolerance (HT) indexes showed a significant difference among the parents and RILs population, and SF and HT have different of effect under natural and artificial high temperature conditions. Sixty-one QTLs were detected on chromosomes 1-8, 10 and 12, while 25, 27 and 14 additive QTLs were identified under the control, natural and artificial high temperature conditions, respectively. Pleiotropic effects and QTL hotspots are the key factors affecting these traits, three key major QTL clusters qHTSF1, qHTSF4, and qHTSF12 can be stably expressed. In addition, epistatic effect is an important component in the regulation of heat tolerance. A total of 17 pairs of epistatic interaction loci were detected, and these additive QTL clusters have a significant epistatic effect. Bulk segregant analysis (BSA) method was proved to be a convenient method to detect major QTLs. Three QTLs, namely qSF1, qSF2 and qSF12 were detected under high temperature environment, and there is a highly significant correlation among these addictive QTLs. These results will lay the foundation for the further fine mapping of these major QTLs and enrich the molecular marker-assisted selection of heat-tolerant gene resources in rice breeding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sherzod Nigmatullayevich Rajametov ◽  
Eun Young Yang ◽  
Myeong Cheoul Cho ◽  
Soo Young Chae ◽  
Hyo Bong Jeong ◽  
...  

AbstractUnderstanding the mechanism for heat tolerance is important for the hot pepper breeding program to develop heat-tolerant cultivars in changing climate. This study was conducted to investigate physiological and biochemical parameters related to heat tolerance and to determine leaf heat damage levels critical for selecting heat-tolerant genotypes. Seedlings of two commercial cultivars, heat-tolerant ‘NW Bigarim’ (NB) and susceptible ‘Chyung Yang’ (CY), were grown in 42 °C for ten days. Photosynthesis, electrolyte conductivity, proline content were measured among seedlings during heat treatment. Photosynthetic rate was significantly reduced in ‘CY’ but not in ‘NB’ seedlings in 42 °C. Stomatal conductivity and transpiration rate was significantly higher in ‘NB’ than ‘CY’. Proline content was also significantly higher in ‘NB’. After heat treatment, leaf heat damages were determined as 0, 25, 50 and 75% and plants with different leaf heat damages were moved to a glasshouse (30–32/22–24 °C in day/night). The growth and developmental parameters were investigated until 70 days. ‘NB’ was significantly affected by leaf heat damages only in fruit yield while ‘CY’ was in fruit set, number and yield. ‘NB’ showed fast recovery after heat stress compared to ‘CY’. These results suggest that constant photosynthetic rate via increased transpiration rate as well as high proline content in heat stress condition confer faster recovery from heat damage of heat-tolerant cultivars in seedlings stages.


Author(s):  
Sherzod Rajametov ◽  
Eun Young Yang ◽  
Myeong Cheoul Cho ◽  
Soo Young Chae ◽  
Hyo Bong Jeong ◽  
...  

Understanding the mechanism for heat tolerance is important for the hot pepper breeding program to develop heat-tolerant cultivars in changing climate. This study was conducted to investigate physiological and biochemical parameters related to heat tolerance and to determine leaf heat damage levels critical for selecting heat-tolerant genotypes. Seedlings of two commercial cultivars, heat-tolerant ‘NW Bigarim’ (NB) and susceptible ‘Chyung Yang’ (CY), were grown in 42 °C for ten days. Photosynthesis, electrolyte conductivity, proline content were measured among seedlings during heat treatment. Photosynthetic rate was significantly reduced in ‘CY’ but not in ‘NB’ seedlings in 42 °C. Stomatal conductivity and transpiration rate was significantly higher in ‘NB’ than ‘CY’. Proline content was also significantly higher in ‘NB’. After heat treatment, leaf heat damages were determined as 0, 25, 50 and 75% and plants with different leaf heat damages were moved to a glasshouse (30–32/22–24 °C in day/night). The growth and developmental parameters were investigated until 70 days. ‘NB’ was significantly affected by leaf heat damages only in fruit yield while ‘CY’ was in fruit set, number and yield. ‘NB’ showed fast recovery after heat stress compared to ‘CY’. These results suggest that constant photosynthetic rate via increased transpiration rate as well as high proline content in heat stress condition confer faster recovery from heat damage of heat-tolerant cultivars in seedlings stages.


Author(s):  
Sherzod Nigmatullayevich Rajametov ◽  
Eun Young Yang ◽  
Hyo Bong Jeong ◽  
Myeong Cheoul Cho ◽  
Soo-Young Chae ◽  
...  

High temperature seriously effects on plant vegetative and reproductive development and reduces productivity of plants, while to increase crop yield is the main target in most crop heat stress tolerance improvement breeding programs, not just survival, under high temperature. Our aim was to compare temperature stress tolerance in two commercial tomato cultivars “Dafnis” (big fruit size) and “Minichal” (cherry fruit size) to develop early screening methods and find out survival rate and physiological responses of tomato cultivars on high temperature (40°C and within 70% RH, day/night) in 4-5 true leaf seedling stage- (4LS) and identifies the linkage of heat tolerance with fruit set and leaf heat damage rates (LHD) in seedling stage with subsequent vegetative traits at recovery. Results showed that heat stress significantly affected on physiological-chemical and vegetative parameters of seedlings regardless of tomato cultivars. Survival and the threshold level of high temperature tolerance in the seedlings of cv. “Dafnis” and “Minichal” were identified on days 7 and 9, respectively. Our findings revealed that photosynthesis (PN, Gs, Ci, Tr) parameters were increased and CHL content persisted steady value in cv. “Minichal” during heat stress period, however EC and RPL rates were lower than cv. “Dafnis”. Heat stress reduced the SFW in both cultivars in seedling stage, but PH and RFW were significantly decreased in the heat tolerant cv. “Minichal”, whereas this parameters were not significantly ranged in the heat susceptible cv. “Dafnis”. Additionally, there no found linkage between vegetative parameters with decreasing of PN and CHL rates during HT of seedlings. In plants of cv. “Minichal” with LHD-25, 50 and 75% were no found significant differences in PH, whereas in cv. “Dafnis” significant differences were determined in plants with LHD-75%, and the significant differences in rates of SFW and RFW were observed in plants of cv. “Dafnis” having LHD-75% for 28 days of recovery at NT condition. Taken together, we concluded that heat stress affected on physiological parameters regardless of tolerance level, and to identify heat tolerant genotype in tomato breeding program, screening and selection genotypes have to be evaluated at the vegetative and reproductive stages with consideration fruit size types. Since we could not find linkage between heat tolerances in seedling stage with fruit set at the reproductive stage and fruit set cannot be used as a general predictor of heat tolerance.


2017 ◽  
Vol 68 (2) ◽  
pp. 148 ◽  
Author(s):  
Krishnanand P. Kulkarni ◽  
Sovetgul Asekova ◽  
Dong-Ho Lee ◽  
Kristin Bilyeu ◽  
Jong Tae Song ◽  
...  

Seed weight can be an important component for soybean quality and yield. The objective of the present study was to identify quantitative trait loci (QTLs) for 100-seed weight by using 169 recombinant inbred lines (RILs) derived from the cross Williams 82 × PI 366121. The parental lines and RILs were grown for four consecutive years (2012–15) in the field. The seeds were harvested after maturity, dried and used to measure 100-seed weight. Analysis of variance indicated significant differences among the RILs for 100-seed weight. The environment had significant effect on seed-weight expression as indicated by the genotype × environment interaction. QTL analysis employing inclusive composite interval mapping of additive QTLs implemented in QTL IciMapping (Version 4.1) identified nine QTLs (LOD >3) on chromosomes 1, 2, 6, 8, 13, 14, 17 and 20. The individual QTLs explained phenotypic variation in the range 6.1–12.4%. The QTLs were detected in one or two environments, indicating major influence of the growing environment on seed-weight expression. Four QTLs identified in this study, qSW-02_1, qSW-06_1, qSW-13_1 and qSW-14_1, were found to be new QTLs. The findings of the study may be helpful to reveal the molecular genetic basis of the seed-weight trait in soybean.


2014 ◽  
Vol 50 (No. 2) ◽  
pp. 171-176 ◽  
Author(s):  
B.S. Patil ◽  
R.L. Ravikumar ◽  
J.S. Bhat ◽  
C.D. Soregaon

A molecular map of chickpea was constructed using F<sub>9</sub>:F<sub>10</sub> recombinant inbred lines from an intraspecific cross between Fusarium wilt susceptible (JG 62) and resistant (WR 315) genotypes. A total of 23 markers with LOD scores of &gt; 3.0 were mapped on the recombinant inbred lines (RILs). Twenty sequence tagged microsatellites (STMSs) and three amplified fragment length polymorphisms (AFLPs) covered 300.2 cM in five linkage groups at an average inter-marker distance of 13 cM. Early and late wilting due to Fusarium infection was recorded in RILs at 30&nbsp;and 60 DAS, respectively. There was a significant variation among RILs for wilt resistance for both early and late wilting. QTLs associated with early (30 days after sowing (DAS)) and late (60&nbsp;DAS) wilting are located on LG II. The flanking markers for these QTLs were the same as those of previous reports. Five STMS markers located on LG II of reference map (interspecific) were mapped on LG II of the present map (intraspecific) with minor changes in the order of markers indicating the conservation of these genomic regions across the Cicer species.


2020 ◽  
Vol 47 (5) ◽  
pp. 440 ◽  
Author(s):  
Syed Adeel Zafar ◽  
Amjad Hameed ◽  
Muhammad Ashraf ◽  
Abdus Salam Khan ◽  
Zia-ul- Qamar ◽  
...  

Climatic variations have increased the occurrence of heat stress during critical growth stages, which negatively affects grain yield in rice. Plants adapt to harsh environments, and particularly high-temperature stress, by regulating their physiological and biochemical processes, which are key tolerance mechanisms. The identification of heat-tolerant rice genotypes and reliable selection indices are crucial for rice improvement programs. Here, we evaluated the response of a rice mutant population for high-temperature stress at the seedling and reproductive stages based on agronomic, physiological and molecular indices. Estimates of variance components revealed significant differences (P &lt; 0.001) among genotypes, treatments and their interactions for almost all traits. The principal component analysis showed significant diversity among genotypes and traits under high-temperature stress. The mutant HTT-121 was identified as the most heat-tolerant mutant with higher grain yield, panicle fertility, cell membrane thermo-stability (CMTS) and antioxidant enzyme levels under heat stress. Various seedling-based morpho-physiological traits (leaf fresh weight, relative water contents, malondialdehyde, CMTS) and biochemical traits (superoxide dismutase, catalase and hydrogen peroxide) explained variations in grain yield that could be used as selection indices for heat tolerance in rice during early growth. Notably, heat-sensitive mutants accumulated reactive oxygen species, reduced catalase activity and upregulated OsSRFP1 expression under heat stress, suggesting their key roles in regulating heat tolerance in rice. The heat-tolerant mutants identified in this study could be used in breeding programs and to develop mapping populations to unravel the underlying genetic architecture for heat-stress adaptability.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 597 ◽  
Author(s):  
Misganaw Wassie ◽  
Weihong Zhang ◽  
Qiang Zhang ◽  
Kang Ji ◽  
Liang Chen

Alfalfa (Medicago sativa L.) is a valuable forage legume, but its production is largely affected by high temperature. In this study, we investigated the effect of heat stress on 15 alfalfa cultivars to identify heat-tolerant and -sensitive cultivars. Seedlings were exposed to 38/35 °C day/night temperature for 7 days and various parameters were measured. Heat stress significantly reduced the biomass, relative water content (RWC), chlorophyll content, and increased the electrolyte leakage (EL) and malondialdehyde (MDA) content of heat-sensitive alfalfa cultivars. However, heat-tolerant cultivars showed higher soluble sugar (SS) and soluble protein (SP) content. The heat tolerance of each cultivar was comprehensively evaluated based on membership function value. Cultivars with higher mean membership function value of 0.86 (Bara310SC) and 0.80 (Magna995) were heat tolerant, and Gibraltar and WL712 with lower membership function value (0.24) were heat sensitive. The heat tolerance of the above four cultivars were further evaluated by chlorophyll a fluorescence analysis. Heat stress significantly affected the photosynthetic activity of heat-sensitive cultivars. The overall results indicate that Bara310SC and WL712 are heat-tolerant and heat-sensitive cultivars, respectively. This study provides basic information for understanding the effect of heat stress on growth and productivity of alfalfa.


Sign in / Sign up

Export Citation Format

Share Document