scholarly journals Mutations within the Open Reading Frame (ORF) including Ochre stop codon of the Surface Glycoprotein gene of SARS-CoV-2 virus erase potential seed location motifs of human non-coding microRNAs.

2021 ◽  
Author(s):  
Krishna Himmatbhai Goyani ◽  
Shalin Vaniawala ◽  
Pratap Narayan Mukhopadhyaya

MicroRNA are short and non-coding RNA, 18-25 nucleotides in length. They are produced at the early stage of viral infection. The roles played by cellular miRNAs and miRNA-mediated gene-silencing in the COVID-19 epidemic period is critical in order to develop novel therapeutics. We analysed SARS-CoV-2 Surface Glycoprotein (S) nucleotide sequence originating from India as well as Iran, Australia, Germany, Italy, Russia, China, Japan and Turkey and identified mutation in potential seed location of several human miRNA. Seventy single nucleotide polymorphisms (SNP) were detected in the S gene out of which, 36, 32 and 2 were cases of transitions, transversions and deletions respectively. Eleven human miRNA targets were identified on the reference S gene sequence with a score >80 in the miRDB database. Mutation A845S erased a common binding site of 7 human miRNA (miR-195-5p, miR-16-5p, miR-15b-5p, miR-15a-5p, miR-497-5p, miR-424-5p and miR-6838-5p). A synonymous mutation altered the wild type Ochre stop codon within the S gene sequence (Italy) to Opal thereby changing the seed sequence of miR-511-3p. Similar (synonymous) mutations were detected at amino acid position 659 and 1116 of the S gene where amino acids serine and threonine were retained, abolishing potential seed location for miR-219a-1-3p and miR-20b-3p respectively. The significance of this finding in reference to the strategy to use synthetic miRNA combinations as a novel therapeutic tool is discussed.

1990 ◽  
Vol 64 (02) ◽  
pp. 239-244 ◽  
Author(s):  
P H Reitsma ◽  
W te Lintel Hekkert ◽  
E Koenhen ◽  
P A van der Velden ◽  
C F Allaart ◽  
...  

SummaryScreening of restriction erzyme digested DNA from normal and protein C deficient individuals with a variety of probes derived from the protein C locus has revealed the existence of two neutral MspI polymorphism. One polymorphism (MI), which is located ≈7 kb upstream of the protein C gene, has allelic frequencies of 69 and 31%, and was used to exclude extensive gene deletions as a likely cause of type I protein C deficiency in 50% of cases in a panel of 22 families. Furtherrnore, the same polymorphism has been used in 5 doubly affected individuals establishing compound heterozygosity in 3 of these.The second, intragenic, polymorphism (MII) has allelic frequencies of 99 and 1% in the normal population. The frequency of the rare allele of this RFLP was with 7% much higher in a panel of 22 Dutch families with protein C deficiency. Interestingly, in all three probands that were heterozygous for MII the rare allele of MII coincided with a point mutation that leads to a stop codon in amino acid position 306 of the protein C coding sequence. This mutation may account for 14% of the protein C deficient individuals in The Netherlands.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 747
Author(s):  
Nicola Pusterla ◽  
Samantha Barnum ◽  
Julia Miller ◽  
Sarah Varnell ◽  
Barbara Dallap-Schaer ◽  
...  

Here we report on an EHV-1 outbreak investigation caused by a novel genotype H752 (histidine in amino acid position 752 of the ORF 30 gene). The outbreak involved 31 performance horses. Horses were monitored over a period of 35 days for clinical signs, therapeutic outcome and qPCR results of EHV-1 in blood and nasal secretions. The morbidity of the EHV-1 outbreak was 84% with 26 clinically infected horses displaying fever and less frequently anorexia and distal limb edema. Four horses showed mild transient neurological deficits. Clinically diseased horses experienced high viral load of EHV-1 in blood and/or nasal secretions via qPCR, while subclinically infected horses had detectable EHV-1 mainly in nasal secretions. The majority of infected horses showed a rise in antibody titers to EHV-1 during the outbreak. All 31 horses were treated with valacyclovir, while clinically infected horses further received flunixin meglumine and sodium heparin. This investigation highlights various relevant aspects of an EHV-1 outbreak caused by a new H752 genotype: (i) importance of early detection of EHV-1 infection; (ii) diagnostic challenge to assess H752 genotype; (iii) apparent benefit of valacyclovir use in the early stage of the outbreak; and (iv) weekly testing of blood and nasal secretions by qPCR in order to monitor individual infection status and lift quarantine.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Mohamed A. Farrag ◽  
Haitham M. Amer ◽  
Rauf Bhat ◽  
Fahad N. Almajhdi

Abstract Background The Middle East Respiratory Syndrome-related Coronavirus (MERS-CoV) continues to exist in the Middle East sporadically. Thorough investigations of the evolution of human coronaviruses (HCoVs) are urgently required. In the current study, we studied amplified fragments of ORF1a/b, Spike (S) gene, ORF3/4a, and ORF4b of four human MERS-CoV strains for tracking the evolution of MERS-CoV over time. Methods RNA isolated from nasopharyngeal aspirate, sputum, and tracheal swabs/aspirates from hospitalized patients with suspected MERS-CoV infection were analyzed for amplification of nine variable genomic fragments. Sequence comparisons were done using different bioinformatics tools available. Results Several mutations were identified in ORF1a/b, ORF3/4a and ORF4b, with the highest mutation rates in the S gene. Five codons; 4 in ORF1a and 1 in the S gene, were found to be under selective pressure. Characteristic amino acid changes, potentially hosted and year specific were defined across the S protein and in the receptor-binding domain Phylogenetic analysis using S gene sequence revealed clustering of MERS-CoV strains into three main clades, A, B and C with subdivision of with clade B into B1 to B4. Conclusions In conclusion, MERS-CoV appears to continuously evolve. It is recommended that the molecular and pathobiological characteristics of future MERS-CoV strains should be analyzed on regular basis to prevent potential future outbreaks at early phases.


2021 ◽  
pp. 172460082110111
Author(s):  
Erika Korobeinikova ◽  
Rasa Ugenskiene ◽  
Ruta Insodaite ◽  
Viktoras Rudzianskas ◽  
Jurgita Gudaitiene ◽  
...  

Background: Genetic variations in oxidative stress-related genes may alter the coded protein level and impact the pathogenesis of breast cancer. Methods: The current study investigated the associations of functional single nucleotide polymorphisms in the NFE2L2, HMOX1, P21, TXNRD2, and ATF3 genes with the early-stage breast cancer clinicopathological characteristics and disease-free survival, metastasis-free survival, and overall survival. A total of 202 Eastern European (Lithuanian) women with primary I–II stage breast cancer were involved. Genotyping of the single nucleotide polymorphisms was performed using TaqMan single nucleotide polymorphisms genotyping assays. Results: The CA+AA genotypes of P21 rs1801270 were significantly less frequent in patients with lymph node metastasis and larger tumor size ( P=0.041 and P=0.022, respectively). The TT genotype in ATF3 rs3125289 had significantly lower risk of estrogen receptor (ER), progesterone receptor (PR) negative, and human epidermal growth factor receptor 2 (HER2) positive status ( P=0.023, P=0.046, and P=0.040, respectively). In both, univariate and multivariate Cox analysis, TXNRD2 rs1139793 GG genotype vs. GA+AA was a negative prognostic factor for disease-free survival (multivariate hazard ratio (HR) 2.248; P=0.025) and overall survival (multivariate HR 2.248; P=0.029). The ATF3 rs11119982 CC genotype in the genotype model was a negative prognostic factor for disease-free survival (multivariate HR 5.878; P=0.006), metastasis-free survival (multivariate HR 4.759; P=0.018), and overall survival (multivariate HR 3.280; P=0.048). Conclusion: Our findings suggest that P21 rs1801270 is associated with lymph node metastasis and larger tumor size, and ATF3 rs3125289 is associated with ER, PR, and HER2 status. Two potential, novel, early-stage breast cancer survival biomarkers, TXNRD2 rs1139793 and ATF3 rs11119982, were detected. Further investigations are needed to confirm the results of the current study.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Ommer Mohammed Dafalla ◽  
Mohammed Alzahrani ◽  
Ahmed Sahli ◽  
Mohammed Abdulla Al Helal ◽  
Mohammad Mohammad Alhazmi ◽  
...  

Abstract Background Artemisinin-based combination therapy (ACT) is recommended at the initial phase for treatment of Plasmodium falciparum, to reduce morbidity and mortality in all countries where malaria is endemic. Polymorphism in portions of P. falciparum gene encoding kelch (K13)-propeller domains is associated with delayed parasite clearance after ACT. Of about 124 different non-synonymous mutations, 46 have been identified in Southeast Asia (SEA), 62 in sub-Saharan Africa (SSA) and 16 in both the regions. This is the first study designed to analyse the prevalence of polymorphism in the P. falciparum k13-propeller domain in the Jazan region of southwest Saudi Arabia, where malaria is endemic. Methods One-hundred and forty P. falciparum samples were collected from Jazan region of southwest Saudi Arabia at three different times: 20 samples in 2011, 40 samples in 2016 and 80 samples in 2020 after the implementation of ACT. Plasmodium falciparum kelch13 (k13) gene DNA was extracted, amplified, sequenced, and analysed using a basic local alignment search tool (BLAST). Results This study obtained 51 non-synonymous (NS) mutations in three time groups, divided as follows: 6 single nucleotide polymorphisms (SNPs) ‘11.8%’ in samples collected in 2011 only, 3 (5.9%) in 2011and 2016, 5 (9.8%) in 2011 and 2020, 5 (9.8%) in 2016 only, 8 (15.7%) in 2016 and 2020, 14 (27.5%) in 2020 and 10 (19.6%) in all the groups. The BLAST revealed that the 2011 isolates were genetically closer to African isolates (53.3%) than Asian ones (46.7%). Interestingly, this proportion changed completely in 2020, to become closer to Asian isolates (81.6%) than to African ones (18.4%). Conclusions Despite the diversity of the identified mutations in the k13-propeller gene, these data did not report widespread artemisinin-resistant polymorphisms in the Jazan region where these samples were collected. Such a process would be expected to increase frequencies of mutations associated with the resistance of ACT.


2012 ◽  
Vol 8 (1) ◽  
pp. 3-7 ◽  
Author(s):  
Maryam Vaezjalali ◽  
Hanieh Rezaee ◽  
Hosein Goudarzi

Genome ◽  
2021 ◽  
Author(s):  
Sakura Hayashi ◽  
Takuji Tsukiyama ◽  
Atsuo Iida ◽  
Masato Kinoshita ◽  
Akihiko Koga

The majority of DNA-based transposable elements comprise autonomous and nonautonomous copies, or only nonautonomous copies, where the autonomous copy contains an intact gene for a transposase protein and the nonautonomous copy does not. Even if autonomous copies coexist, they are generally less frequent. The <i>Tol2</i> element of medaka fish is one of the few elements for which a nonautonomous copy has not yet been found. Here we report the presence of a nonautonomous <i>Tol2</i> copy that was identified by surveying the medaka genome sequence database. This copy contained 3 local sequence alterations that affected the deduced amino acid sequence of the transposase: a deletion of 15 nucleotides resulting in a deletion of 5 amino acids, a base substitution causing a single amino acid change, and another base substitution giving rise to a stop codon. Transposition assays using cultured human cells revealed that the transposase activity was reduced by the 15-nucleotide deletion and abolished by the nonsense mutation. This is the first example of a nonautonomous <i>Tol2</i> copy. Thus, <i>Tol2</i> is in an early stage of decay in the medaka genome, and is therefore a unique element to observe an almost whole decay process that progresses in natural populations.


2018 ◽  
Vol 46 (4) ◽  
pp. 937-944 ◽  
Author(s):  
Robert Rauscher ◽  
Zoya Ignatova

Ribosomes translate mRNAs with non-uniform speed. Translation velocity patterns are a conserved feature of mRNA and have evolved to fine-tune protein folding, expression and function. Synonymous single-nucleotide polymorphisms (sSNPs) that alter programmed translational speed affect expression and function of the encoded protein. Synergistic advances in next-generation sequencing have led to the identification of sSNPs associated with disease penetrance. Here, we draw on studies with disease-related proteins to enhance our understanding of mechanistic contributions of sSNPs to functional alterations of the encoded protein. We emphasize the importance of identification of sSNPs along with disease-causing mutations to understand genotype–phenotype relationships.


Author(s):  
Marzia Del Re ◽  
Federico Cucchiara ◽  
Eleonora Rofi ◽  
Lorenzo Fontanelli ◽  
Iacopo Petrini ◽  
...  

Abstract Background It is still unclear how to combine biomarkers to identify patients who will truly benefit from anti-PD-1 agents in NSCLC. This study investigates exosomal mRNA expression of PD-L1 and IFN-γ, PD-L1 polymorphisms, tumor mutational load (TML) in circulating cell-free DNA (cfDNA) and radiomic features as possible predictive markers of response to nivolumab and pembrolizumab in metastatic NSCLC patients. Methods Patients were enrolled and blood (12 ml) was collected at baseline before receiving anti-PD-1 therapy. Exosome-derived mRNA and cfDNA were extracted to analyse PD-L1 and IFN-γ expression and tumor mutational load (TML) by digital droplet PCR (ddPCR) and next-generation sequencing (NGS), respectively. The PD-L1 single nucleotide polymorphisms (SNPs) c.-14-368 T > C and c.*395G > C, were analysed on genomic DNA by Real-Time PCR. A radiomic analysis was performed on the QUIBIM Precision® V3.0 platform. Results Thirty-eight patients were enrolled. High baseline IFN-γ was independently associated with shorter median PFS (5.6 months vs. not reached p = 0.0057), and levels of PD-L1 showed an increase at 3 months vs. baseline in patients who progressed (p = 0.01). PD-L1 baseline levels showed significant direct and inverse relationships with radiomic features. Radiomic features also inversely correlated with PD-L1 expression in tumor tissue. In subjects receiving nivolumab, median PFS was shorter in carriers of c.*395GG vs. c.*395GC/CC genotype (2.3 months vs. not reached, p = 0.041). Lastly, responders had higher non-synonymous mutations and more links between co-occurring genetic somatic mutations and ARID1A alterations as well. Conclusions A combined multiparametric approach may provide a better understanding of the molecular determinants of response to immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document