scholarly journals Importance of cell division angle, position of cell proliferative area, and localization of AN3 in lateral organ morphology

2021 ◽  
Author(s):  
Ayaka Kinoshita ◽  
Makiko Naito ◽  
Hirokazu Tsukaya

Leaf meristem is a cell proliferative zone present in the lateral organ primordia, and it contributes to the expansion of lateral organ lamina. In this study, we investigated how the proliferative zone affects the final morphology of the lateral organs. We examined how cell proliferative zones differ in the primordia of polar-auxin transport inhibitor (PATI)-treated leaves and floral organs from normal foliage leaf primordia of Arabidopsis thaliana with focus on the spatial accumulation pattern of mRNA and protein of ANGUSTIFOLIA3 (AN3), a key element for leaf meristem positioning. As a result, we revealed that organ shape change by PATI treatment could not be attributed to changes in leaf-meristem positioning, size of the leaf meristem, or the expression pattern of AN3. Instead, it was attributed to altered cell division angles in the leaf meristem. In contrast, different shapes between sepals and petals compared with foliage leaves were observed to be correlated with both altered meristem position associated with altered AN3 expression patterns and different distributions of cell division angles. These results strongly indicate that lateral organ shapes are regulated via two aspects: position of meristem and cell division angles; the former is mainly governed by the AN3 expression pattern.


2020 ◽  
Author(s):  
Aditya C. Bandekar ◽  
Sishir Subedi ◽  
Thomas R. Ioerger ◽  
Christopher M. Sassetti

SummaryWhile the major events in prokaryotic cell cycle progression are likely to be coordinated with transcriptional and metabolic changes, these processes remain poorly characterized. Unlike many rapidly-growing bacteria, DNA replication and cell division are temporally-resolved in mycobacteria, making these slow-growing organisms a potentially useful system to investigate the prokaryotic cell cycle. To determine if cell-cycle dependent gene regulation occurs in mycobacteria, we characterized the temporal changes in the transcriptome of synchronously replicating populations of Mycobacterium tuberculosis (Mtb). By enriching for genes that display a sinusoidal expression pattern, we discover 485 genes that oscillate with a period consistent with the cell cycle. During cytokinesis, the timing of gene induction could be used to predict the timing of gene function, as mRNA abundance was found to correlate with the order in which proteins were recruited to the developing septum. Similarly, the expression pattern of primary metabolic genes could be used to predict the relative importance of these pathways for different cell cycle processes. Pyrimidine synthetic genes peaked during DNA replication and their depletion caused a filamentation phenotype that phenocopied defects in this process. In contrast, the IMP dehydrogenase guaB2 dedicated to guanosine synthesis displayed the opposite expression pattern and its depletion perturbed septation. Together, these data imply obligate coordination between primary metabolism and cell division, and identify periodically regulated genes that can be related to specific cell biological functions.



Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 183-194
Author(s):  
Douglas B Rusch ◽  
Thomas C Kaufman

Abstract The gene proboscipedia (pb) is a member of the Antennapedia complex in Drosophila and is required for the proper specification of the adult mouthparts. In the embryo, pb expression serves no known function despite having an accumulation pattern in the mouthpart anlagen that is conserved across several insect orders. We have identified several of the genes necessary to generate this embryonic pattern of expression. These genes can be roughly split into three categories based on their time of action during development. First, prior to the expression of pb, the gap genes are required to specify the domains where pb may be expressed. Second, the initial expression pattern of pb is controlled by the combined action of the genes Deformed (Dfd), Sex combs reduced (Scr), cap'n'collar (cnc), and teashirt (tsh). Lastly, maintenance of this expression pattern later in development is dependent on the action of a subset of the Polycomb group genes. These interactions are mediated in part through a 500-bp regulatory element in the second intron of pb. We further show that Dfd protein binds in vitro to sequences found in this fragment. This is the first clear demonstration of autonomous positive cross-regulation of one Hox gene by another in Drosophila melanogaster and the binding of Dfd to a cis-acting regulatory element indicates that this control might be direct.



Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 721-731 ◽  
Author(s):  
Teresa D Shippy ◽  
Jianhua Guo ◽  
Susan J Brown ◽  
Richard W Beeman ◽  
Robin E Denell

Abstract The Tribolium castaneum homeotic gene maxillopedia (mxp) is the ortholog of Drosophila proboscipedia (pb). Here we describe and classify available mxp alleles. Larvae lacking all mxp function die soon after hatching, exhibiting strong transformations of maxillary and labial palps to legs. Hypomorphic mxp alleles produce less severe transformations to leg. RNA interference with maxillopedia double-stranded RNA results in phenocopies of mxp mutant phenotypes ranging from partial to complete transformations. A number of gain-of-function (GOF) mxp alleles have been isolated based on transformations of adult antennae and/or legs toward palps. Finally, we have characterized the mxp expression pattern in wild-type and mutant embryos. In normal embryos, mxp is expressed in the maxillary and labial segments, whereas ectopic expression is observed in some GOF variants. Although mxp and Pb display very similar expression patterns, pb null embryos develop normally. The mxp mutant larval phenotype in Tribolium is consistent with the hypothesis that an ancestral pb-like gene had an embryonic function that was lost in the lineage leading to Drosophila.



BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jorge A. Ramírez-Tejero ◽  
Jaime Jiménez-Ruiz ◽  
Alicia Serrano ◽  
Angjelina Belaj ◽  
Lorenzo León ◽  
...  

Abstract Background Olive orchards are threatened by a wide range of pathogens. Of these, Verticillium dahliae has been in the spotlight for its high incidence, the difficulty to control it and the few cultivars that has increased tolerance to the pathogen. Disease resistance not only depends on detection of pathogen invasion and induction of responses by the plant, but also on barriers to avoid the invasion and active resistance mechanisms constitutively expressed in the absence of the pathogen. In a previous work we found that two healthy non-infected plants from cultivars that differ in V. dahliae resistance such as ‘Frantoio’ (resistant) and ‘Picual’ (susceptible) had a different root morphology and gene expression pattern. In this work, we have addressed the issue of basal differences in the roots between Resistant and Susceptible cultivars. Results The gene expression pattern of roots from 29 olive cultivars with different degree of resistance/susceptibility to V. dahliae was analyzed by RNA-Seq. However, only the Highly Resistant and Extremely Susceptible cultivars showed significant differences in gene expression among various groups of cultivars. A set of 421 genes showing an inverse differential expression level between the Highly Resistant to Extremely Susceptible cultivars was found and analyzed. The main differences involved higher expression of a series of transcription factors and genes involved in processes of molecules importation to nucleus, plant defense genes and lower expression of root growth and development genes in Highly Resistant cultivars, while a reverse pattern in Moderately Susceptible and more pronounced in Extremely Susceptible cultivars were observed. Conclusion According to the different gene expression patterns, it seems that the roots of the Extremely Susceptible cultivars focus more on growth and development, while some other functions, such as defense against pathogens, have a higher expression level in roots of Highly Resistant cultivars. Therefore, it seems that there are constitutive differences in the roots between Resistant and Susceptible cultivars, and that susceptible roots seem to provide a more suitable environment for the pathogen than the resistant ones.



2003 ◽  
Vol 16 (9) ◽  
pp. 808-816 ◽  
Author(s):  
Carole Santi ◽  
Uritza von Groll ◽  
Ana Ribeiro ◽  
Maurizio Chiurazzi ◽  
Florence Auguy ◽  
...  

Two types of root nodule symbioses are known for higher plants, legume and actinorhizal symbioses. In legume symbioses, bacterial signal factors induce the expression of ENOD40 genes. We isolated an ENOD40 promoter from an actinorhizal plant, Casuarina glauca, and compared its expression pattern in a legume (Lotus japonicus) and an actinorhizal plant (Allocasuarina verticillata) with that of an ENOD40 promoter from the legume soybean (GmENOD402). In the actinorhizal Allocasuarina sp., CgENOD40-GUS and GmENOD40-2-GUS showed similar expression patterns in both vegetative and symbiotic development, and neither promoter was active during nodule induction. The nonsymbiotic expression pattern of CgENOD40-GUS in the legume genus Lotus resembled the nonsymbiotic expression patterns of legume ENOD40 genes however, in contrast to GmENOD40-2-GUS, CgENOD40-GUS was not active during nodule induction. The fact that only legume, not actinorhizal, ENOD40 genes are induced during legume nodule induction can be linked to the phloem unloading mechanisms established in the zones of nodule induction in the roots of both types of host plants.



Development ◽  
1975 ◽  
Vol 34 (1) ◽  
pp. 265-277
Author(s):  
J. R. Downie

Since their discovery, cytoplasmic microtubules have been much studied in the context of cell movement and cell shape change. Much of the work has used drugs, particularly colchicine and its relatives, which break down microtubules — the so-called anti-tubulins. Colchicine inhibits the orientated movements of many cell types in vitro, and disrupts cell shape change in several morphogenetic situations. The investigation reported here used chick blastoderm expansion in New culture in an attempt to quantify the colchicine effect on orientated cell movement. However, although colchicine could halt blastoderm expansion entirely, a simple interpretation was not possible. (1) Colchicine at concentrations capable of blocking mitosis, and of disrupting all or most of the cytoplasmic microtubules of the cells studied, inhibited blastoderm expansion, often resulting in an overall retraction of the cell sheet. (2) Though blastoderm expansion does normally involve considerable cell proliferation, the colchicine effect could not be ascribed to a block on cell division since aminopterin, which stops cell division without affecting microtubules, did not inhibit expansion. (3) Blastoderm expansion is effected by the locomotion of a specialized band of edge cells at the blastoderm periphery. These are the only cells normally attached to the vitelline membrane — the substrate for expansion. When most of the blastoderm was excised, leaving the band of edge cells, and the cultures then treated with colchicine, expansion occurred normally. The colchicine effect on blastoderm expansion could not therefore be ascribed to a direct effect on the edge cells. (4) An alternative site of action of the drug is the remaining cells of the blastoderm. These normally become progressively flatter as expansion proceeds. If flattening in these cells is even partially dependent on their cytoplasmic microtubules, disruption of these microtubules might result in the inherent contractility of the cells resisting and eventually halting edge cell migration. That cell shape in these cells is dependent on microtubules was demonstrated by treating flat blastoderm fragments with colchicine. On incubation, the area occupied by these fragments decreased by 25–30 % more than controls. The significance of these results in the general context of orientated cell movements and cell shape determination is discussed, with particular emphasis on the analogous system of Fundulus epiboly.



2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Zhao ◽  
Xueqiang Su ◽  
Xinya Wang ◽  
Mengna Wang ◽  
Xujing Chi ◽  
...  

TCP is a plant-specific transcription factor that plays an important role in flowering, leaf development and other physiological processes. In this study, we identified a total of 155 TCP genes: 34 in Pyrus bretschneideri, 19 in Fragaria vesca, 52 in Malus domestica, 19 in Prunus mume, 17 in Rubus occidentalis and 14 in Prunus avium. The evolutionary relationship of the TCP gene family was examined by constructing a phylogenetic tree, tracking gene duplication events, performing a sliding window analysis. The expression profile analysis and qRT-PCR results of different tissues showed that PbTCP10 were highly expressed in the flowers. These results indicated that PbTCP10 might participated in flowering induction in pear. Expression pattern analysis of different developmental stages showed that PbTCP14 and PbTCP15 were similar to the accumulation pattern of fruit lignin and the stone cell content. These two genes might participate in the thickening of the secondary wall during the formation of stone cells in pear. Subcellular localization showed that PbTCPs worked in the nucleus. This study explored the evolution of TCP genes in six Rosaceae species, and the expression pattern of TCP genes in different tissues of “Dangshan Su” pear. Candidate genes related to flower induction and stone cell formation were identified. In summary, our research provided an important theoretical basis for improving pear fruit quality and increasing fruit yield by molecular breeding.



2021 ◽  
Vol 11 ◽  
Author(s):  
Voddu Suresh ◽  
Deepti Parida ◽  
Aliva P. Minz ◽  
Manisha Sethi ◽  
Bhabani S. Sahoo ◽  
...  

The Syrian golden hamster (Mesocricetus auratus) has recently been demonstrated as a clinically relevant animal model for SARS-CoV-2 infection. However, lack of knowledge about the tissue-specific expression pattern of various proteins in these animals and the unavailability of reagents like antibodies against this species hampers these models’ optimal use. The major objective of our current study was to analyze the tissue-specific expression pattern of angiotensin-converting enzyme 2, a proven functional receptor for SARS-CoV-2 in different organs of the hamster. Using two different antibodies (MA5-32307 and AF933), we have conducted immunoblotting, immunohistochemistry, and immunofluorescence analysis to evaluate the ACE2 expression in different tissues of the hamster. Further, at the mRNA level, the expression of Ace2 in tissues was evaluated through RT-qPCR analysis. Both the antibodies detected expression of ACE2 in kidney, small intestine, tongue, and liver. Epithelium of proximal tubules of kidney and surface epithelium of ileum expresses a very high amount of this protein. Surprisingly, analysis of stained tissue sections showed no detectable expression of ACE2 in the lung or tracheal epithelial cells. Similarly, all parts of the large intestine were negative for ACE2 expression. Analysis of tissues from different age groups and sex didn’t show any obvious difference in ACE2 expression pattern or level. Together, our findings corroborate some of the earlier reports related to ACE2 expression patterns in human tissues and contradict others. We believe that this study’s findings have provided evidence that demands further investigation to understand the predominant respiratory pathology of SARS-CoV-2 infection and disease.



2021 ◽  
Vol 2 ◽  
Author(s):  
Adrienne H. K. Roeder

Abstract During development, Arabidopsis thaliana sepal primordium cells grow, divide and interact with their neighbours, giving rise to a sepal with the correct size, shape and form. Arabidopsis sepals have proven to be a good system for elucidating the emergent processes driving morphogenesis due to their simplicity, their accessibility for imaging and manipulation, and their reproducible development. Sepals undergo a basipetal gradient of growth, with cessation of cell division, slow growth and maturation starting at the tip of the sepal and progressing to the base. In this review, I discuss five recent examples of processes during sepal morphogenesis that yield emergent properties: robust size, tapered tip shape, laminar shape, scattered giant cells and complex gene expression patterns. In each case, experiments examining the dynamics of sepal development led to the hypotheses of local rules. In each example, a computational model was used to demonstrate that these local rules are sufficient to give rise to the emergent properties of morphogenesis.



2001 ◽  
Vol 204 (12) ◽  
pp. 2049-2061 ◽  
Author(s):  
Marie-Dominique Franco ◽  
Michael P. Pape ◽  
Jennifer J. Swiergiel ◽  
Gail D. Burd

SUMMARY In Xenopus laevis, the formation of the adult olfactory epithelium involves embryonic, larval and metamorphic phases. The olfactory epithelium in the principal cavity (PC) develops during embryogenesis from the olfactory placode and is thought to respond to water-borne odorants throughout larval life. During metamorphosis, the PC undergoes major transformations and is exposed to air-borne odorants. Also during metamorphosis, the middle cavity (MC) develops de novo. The olfactory epithelium in the MC has the same characteristics as that in the larval PC and is thought to respond to water-borne odorants. Using in situ hybridization, we analyzed the expression pattern of the homeobox genes X-dll3 and Pax-6 within the developing olfactory system. Early in development, X-dll3 is expressed in both the neuronal and non-neuronal ectoderm of the sense plate and in all cell layers of the olfactory placode and larval PC. Expression becomes restricted to the neurons and basal cells of the PC by mid-metamorphosis. During metamorphosis, X-dll3 is also expressed throughout the developing MC epithelium and becomes restricted to neurons and basal cells at metamorphic climax. This expression pattern suggests that X-dll3 is first involved in the patterning and genesis of all cells forming the olfactory tissue and is then involved in neurogenesis or neuronal maturation in putative water- and air-sensing epithelia. In contrast, Pax-6 expression is restricted to the olfactory placode, larval PC and metamorphic MC, suggesting that Pax-6 is specifically involved in the formation of water-sensing epithelium. The expression patterns suggest that X-dll3 and Pax-6 are both involved in establishing the olfactory placode during embryonic development, but subtle differences in cellular and temporal expression patterns suggest that these genes have distinct functions.



Sign in / Sign up

Export Citation Format

Share Document