scholarly journals The Janus-like role of neuraminidase isoenzymes in inflammation

2021 ◽  
Author(s):  
Md. Amran Howlader ◽  
Ekaterina P Demina ◽  
Suzanne Samarani ◽  
Tianlin Guo ◽  
Ali Ahmad ◽  
...  

The processes of activation, extravasation, and migration of immune cells to a site are early and essential steps in the induction of an acute inflammatory response. These events are part of the inflammatory cascade which involves multiple regulatory steps. Using a murine air-pouch model of inflammation with LPS as an inflammation inducer we demonstrate that isoenzymes of the neuraminidase family (NEU1, 3, and 4) play essential roles in this process acting as positive or negative regulators of leukocyte infiltration. Genetically knocked-out (KO) mice for different NEU genes (Neu1 KO, Neu3 KO, Neu4 KO, and Neu3/4 double KO mice) were induced with LPS, leukocytes at the site of inflammation were counted, and the inflamed tissue was analyzed using immunohistochemistry. Our data show that leukocyte recruitment was decreased in NEU1 and NEU3-deficient mice, while it was increased in NEU4-deficient animals. Consistent with these results, systemic levels of pro-inflammatory cytokines and those in pouch exudate were reduced in Neu1 and increased in Neu4 KO mice. We found that pharmacological inhibitors specific for NEU1, NEU3, and NEU4 isoforms also affected leukocyte recruitment. We conclude that NEU isoenzymes have distinct – and even opposing – effects on leukocyte recruitment, and therefore warrant further investigation to determine their mechanisms and importance as regulators of the inflammatory cascade.

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Iuliia Peshkova ◽  
Aliia Fatkhullina ◽  
Ekaterina Koltsova

Atherosclerosis is a lipid-driven inflammatory disease characterized by the progressive plaque growth in the vessels. Cytokines are important mediators of inflammation and atherosclerosis. While pro-inflammatory cytokines were extensively investigated, little is known about the role of anti-inflammatory cytokines as to their ability to control vascular inflammation. We tested whether immunoregulatory IL-27R signaling is important to control inflammation in mouse models of atherosclerosis. We found that atherosclerosis-prone mice with hematopoietic deficiency of IL-27R ( Ldlr -/- mice reconstituted with bone marrow from Il27ra -/- ) or global deficiency ( Il27ra -/- x Apoe -/- ) developed significantly larger atherosclerotic lesions compared to controls. Atherosclerotic lesions in IL-27R deficient mice contained more CD45 + leukocytes and CD4 + T cells, which produced pro-atherogenic cytokines IL-17A and TNF-α. These cytokines normally suppressed by IL-27, regulated the expression of CCL2 and other chemokines, which in turn led to accumulation of myeloid CD11b + and CD11c + cells in atherosclerotic aortas. Using two-photon microscopy, we found enhanced interactions between antigen presenting cells and T cells in the aortas of IL-27R deficient mice accompanied by enhanced CD4 T cell proliferation. Moreover, macrophages in Il27ra -/- aortas also demonstrated enhanced ability to produce pro-inflammatory cytokines, including IL-1. The blockade of IL-1R signaling, however, strongly suppressed atherosclerosis progression in IL-27R deficient but not control mice, suggesting an important role of IL-27 in the regulation of IL-1 production in atherosclerosis. Overall, our data demonstrate that IL-27R signaling in atherosclerosis is required to control function of antigen presenting cells modulating subsequent T cell activation in the aortas. Moreover, it controls macrophage activation and pro-inflammatory myeloid cell-derived cytokine production. These mechanisms altogether curb pathogenic T cell lineage differentiation and, thus, atherosclerosis, suggesting potent anti-atherogenic role of IL-27.


2017 ◽  
Vol 44 (2) ◽  
pp. 554-566 ◽  
Author(s):  
Qian Yu ◽  
Xu Han ◽  
Da-Li Tian

Background/Aims: ATP-binding cassette transporter E1 (ABCE1), a unique ABC superfamily member that bears two Fe-S clusters, is essential for metastatic progression in lung cancer. Fe-S clusters within ABCE1 are crucial for ribosome dissociation and translation reinitiation; however, whether these clusters promote tumor proliferation and migration is unclear. Methods: The interaction between ABCE1 and β-actin was confirmed using GST pull-down. The lung adenocarcinoma (LUAD) cell line A549 was transduced with lentiviral packaging vectors overexpressing either wild-type ABCE1 or ABCE1 with Fe-S cluster deletions (ΔABCE1). The role of Fe-S clusters in the viability and migration of cancer cells was evaluated using clonogenic, MTT, Transwell and wound healing assays. Cytoskeletal rearrangement was determined using immunofluorescent techniques. Results: Fe-S clusters were the key domains in ABCE1 involved in binding to β-actin. The proliferative and migratory capacity increased in cells overexpressing ABCE1. However, the absence of Fe-S clusters reversed these effects. A549 cells overexpressing ABCE1 exhibited irregular morphology and increased levels of cytoskeletal polymerization as indicated by the immunofluorescence images. In contrast, cells expressing the Fe-S cluster deletion mutant presented opposing effects. Conclusion: These results demonstrate the indispensable role of Fe-S clusters when ABCE1 participates in the proliferation and migration of LUADs by interacting with β-actin. The Fe-S clusters of ABCE1 may be potential targets for the prevention of lung cancer metastasis.


2020 ◽  
Vol 115 (6) ◽  
Author(s):  
Mehreen Batool ◽  
Eva M. Berghausen ◽  
Mario Zierden ◽  
Marius Vantler ◽  
Ralph T. Schermuly ◽  
...  

AbstractSix-transmembrane protein of prostate (Stamp2) protects from diabetes and atherosclerosis in mice via anti-inflammatory mechanisms. As chronic inflammation is a hallmark of pulmonary arterial hypertension (PAH), we investigated the role of Stamp2. Stamp2 expression was substantially reduced in the lung of humans with idiopathic PAH, as well as in experimental PAH. In Stamp2-deficient mice, hypoxia modestly aggravated pulmonary vascular remodeling and right ventricular pressure compared to WT. As endothelial cell (EC) and pulmonary arterial smooth muscle cell (PASMC) phenotypes drive remodeling in PAH, we explored the role of Stamp2. Knock-down of Stamp2 in human EC neither affected apoptosis, viability, nor release of IL-6. Moreover, Stamp2 deficiency in primary PASMC did not alter mitogenic or migratory properties. As Stamp2 deficiency augmented expression of inflammatory cytokines and numbers of CD68-positive cells in the lung, actions of Stamp2 in macrophages may drive vascular remodeling. Thus, PASMC responses were assessed following treatment with conditioned media of primary Stamp2−/− or WT macrophages. Stamp2−/− supernatants induced PASMC proliferation and migration stronger compared to WT. A cytokine array revealed CXCL12, MCP-1 and IL-6 as most relevant candidates. Experiments with neutralizing antibodies confirmed the role of these cytokines in driving Stamp2’s responses. In conclusion, Stamp2 deficiency aggravates pulmonary vascular remodeling via cross-talk between macrophages and PASMC. Despite a substantial pro-inflammatory response, the hemodynamic effect of Stamp2 deficiency is modest suggesting that additional mechanisms apart from inflammation are necessary to induce severe PAH.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 443-443
Author(s):  
Chelsea Hope ◽  
Ellen Hebron ◽  
Jaehyup Kim ◽  
Jeff Jensen ◽  
Claire Flanagan ◽  
...  

Abstract Abstract 443 Benefit from cytotoxic therapy in myeloma may be limited by persistence of residual tumor cells nested within favorable niches. However, the contribution of macrophages to the regulation of myeloma niches is still incompletely understood. We have previously shown that macrophages provide growth and anti-apoptotic signals to myeloma cells when grown in co-culture. These results prompted us to investigate the regulation of primary monocytes/macrophages that reside within myeloma niches in the bone marrow. Unmanipulated CD14+ monocytic cells, freshly explanted from myeloma bone marrows, displayed a pre-dominantly pro-inflammatory transcriptomic profile when compared to normal monocytes. We found enhanced transcription of genes encoding pro-inflammatory mediators, known to support growth and survival of myeloma cells, such as TNFalpha, IL-1beta, IL-6, IL-8 and TACI. Downregulation of TGFbeta was also consistent with a pro-inflammatory (M1) signature. Interestingly, we also found concurrent transcription of some genes characteristic of “alternative macrophage activation” (M2 phenotype) such as IL-10 and IL1-receptor antagonist (IL-1RN). These results suggest that myeloma-associated macrophages, while being predominantly pro-inflammatory, display significant plasticity between the M1-M2 phenotypic extremes. To obtain insights into the underlying mechanisms, we examined the role of TPL2 (Cot, MAP3K8), a serine/threonine kinase with central and non-redundant roles in regulating innate immune responses in macrophages following activation by Toll receptor (TLR) ligands and members of the TNF ligand superfamily. In myeloma-associated macrophages, we found constitutive activation of a TPL2 kinase-dependent, ERK-mediated pathway that promotes synthesis and processing of pro-inflammatory cytokines, including TNFalpha and IL-1beta. We also discovered constitutive activation of AKT at Ser473, a site dependent for its phosphorylation on TPL2 activity in macrophages responding to TLR signaling. Notably, the Akt/mTOR pathway limits the magnitude and duration of macrophage activation, in part through synthesis of the anti-inflammatory cytokine IL-10. These events involve signaling through STAT3. Accordingly, we discovered constitutive phosphorylation of STAT3 at a site regulated by TPL2 in activated macrophages. In addition to non-tumor cell autonomous roles in regulating myeloma through macrophages, we showed a tumor cell-autonomous, growth-regulatory role of TPL2 kinase. Treatment of myeloma cells with a TPL2 small molecule inhibitor resulted in apoptosis that was not rescued by the presence of patient-derived stromal cells. We postulate that TPL2 inhibition interferes with growth signaling in myeloma cells because TPL2 has been shown to substitute for RAF proteins in growth signal transduction. Interestingly, we found that TPL2 was activated by phosphorylation as cells entered G2/M. Treatment with nocodazole increased the proportion of cells that co-expressed phosphorylated TPL2 and phosphorylated histone H3. Moreover, we found that TPL2 activity was required for MAPK pathway signal transduction in response to TNF receptor stimulation in myeloma cells. Taken together, our results provide important novel insights into the regulation of macrophages within primary myeloma niches in the bone marrow. Plasticity between M1 and M2 phenotypes may correlate tightly with the actions of TPL2 kinase. In the myeloma niche, TPL2 activity helps to fine-tune macrophage activation by promoting synthesis and release of pro-inflammatory cytokines required by the myeloma tumor cell while engaging counter-regulatory mechanisms to prevent tissue destruction mediated by activated macrophages. Additionally, we described a growth regulatory role of TPL2 in the tumor cell itself. Thus, TPL2 blockade may disrupt crucial macrophage-tumor cell interactions within myeloma niches. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 15 (3) ◽  
pp. 389-398
Author(s):  
Ruchi Singh

Rural economies in developing countries are often characterized by credit constraints. Although few attempts have been made to understand the trends and patterns of male out-migration from Uttar Pradesh (UP), there is dearth of literature on the linkage between credit accessibility and male migration in rural Uttar Pradesh. The present study tries to fill this gap. The objective of this study is to assess the role of credit accessibility in determining rural male migration. A primary survey of 370 households was conducted in six villages of Jaunpur district in Uttar Pradesh. Simple statistical tools and a binary logistic regression model were used for analyzing the data. The result of the empirical analysis shows that various sources of credit and accessibility to them play a very important role in male migration in rural Uttar Pradesh. The study also found that the relationship between credit constraints and migration varies across various social groups in UP.


2017 ◽  
Author(s):  
Serena Martinelli ◽  
Vanessa D'Antongiovanni ◽  
Susan Richter ◽  
Letizia Canu ◽  
Tonino Ercolino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document