scholarly journals Potato juice, a starch industry waste, as a cost-effective medium for the biosynthesis of bacterial cellulose

2021 ◽  
Author(s):  
Daria Ciecholewska-Jusko ◽  
Michal Broda ◽  
Anna Zywicka ◽  
Daniel Styburski ◽  
Peter Sobolewski ◽  
...  

The unique properties of bacterial cellulose (BC) make it of great interest for numerous branches of industry. Nevertheless, the high cost of the dedicated, microbiological medium used for BC production significantly hinders possibility of widespread use. Searching for an alternative, we turned our attention to potato tuber juice (PJ), a major waste product of the potato starch industry. We verified the possibility of using PJ as a cost-effective, ecological-friendly medium that yielded BC with properties equivalent to those from conventional commercial Hestrin-Schramm medium. The BC yield from PJ medium (>4 g/L) was comparable, despite the lack of any pre-treatment. Likewise, the macro- and microstructure, physicochemical parameters, and chemical composition showed no significant differences between PJ and control BC. Importantly, BC obtained from PJ was not cytotoxic against fibroblast cell line L929 in vitro and did not contain any hard-to-remove impurities. These are very important aspects from an application standpoint, particularly in biomedicine. Therefore, we conclude that using PJ for BC biosynthesis is a path towards significant valorization of an environmentally problematic waste product of the starch industry and can help ultimately lower BC production costs.

2021 ◽  
Vol 22 (19) ◽  
pp. 10807
Author(s):  
Daria Ciecholewska-Juśko ◽  
Michał Broda ◽  
Anna Żywicka ◽  
Daniel Styburski ◽  
Peter Sobolewski ◽  
...  

In this work, we verified the possibility of valorizing a major waste product of the potato starch industry, potato tuber juice (PJ). We obtained a cost-effective, ecological-friendly microbiological medium that yielded bacterial cellulose (BC) with properties equivalent to those from conventional commercial Hestrin–Schramm medium. The BC yield from the PJ medium (>4 g/L) was comparable, despite the lack of any pre-treatment. Likewise, the macro- and microstructure, physicochemical parameters, and chemical composition showed no significant differences between PJ and control BC. Importantly, the BC obtained from PJ was not cytotoxic against fibroblast cell line L929 in vitro and did not contain any hard-to-remove impurities. The PJ-BC soaked with antiseptic exerted a similar antimicrobial effect against Staphylococcus aureus and Pseudomonas aeruginosa as to BC obtained in the conventional medium and supplemented with antiseptic. These are very important aspects from an application standpoint, particularly in biomedicine. Therefore, we conclude that using PJ for BC biosynthesis is a path toward significant valorization of an environmentally problematic waste product of the starch industry, but also toward a significant drop in BC production costs, enabling wider application of this biopolymer in biomedicine.


Parasitology ◽  
2005 ◽  
Vol 131 (5) ◽  
pp. 583-590 ◽  
Author(s):  
YING LEI ◽  
M. DAVEY ◽  
J. T. ELLIS

Attachment and invasion ofToxoplasma gondiiandNeospora caninumto a cat and a dog fibroblast cell line and 2 epithelial cell lines (a cat kidney and Vero) were comparedin vitrousing fluorescence antibody methodology. In addition, trypsin treatment of tachyzoites was used to determine whether protein molecules were essential to the process of invasion. The results show that bothT. gondiiandN. caninuminvaded all 4 cell lines, and that pre-treatment ofT. gondiitachyzoites with trypsin caused an increase in the ability of the parasite to invade these host cells. FurthermoreT. gondii, in comparison toN. caninum, invaded all 4 cell lines at greater levels. The results here support the conclusion that bothT. gondiiandN. caninumhave the ability to invade a variety of cell types including both dog and cat cells, and questions the utility of Vero cells as an appropriate host cell forin vitrostudies on the biology of these taxa.


2020 ◽  
Author(s):  
Alla Amcheslavsky ◽  
Aaron Wallace ◽  
Monir Ejemel ◽  
Qi Li ◽  
Conor McMahon ◽  
...  

AbstractEnterotoxigenic Escherichia coli (ETEC) is estimated to cause approximately 380,000 deaths annually during sporadic or epidemic outbreaks worldwide. There is currently no vaccine licensed to prevent ETEC. Development of prophylaxis against ETEC is challenging due to the vast heterogeneity of the ETEC strains. The discovery of nanobodies has emerged as a successful new biologics in treating mucosal infectious disease as nanobodies can recognize conserved epitopes on hypervariable pathogens. In this study, we performed large screens using immunized llamas and a naïve nanobody yeast display library against adhesins of colonization factors. Cross-protective nanobodies were selected with in vitro activities inhibiting mannose-resistant hemagglutination (MRHA) against all eleven major pathogenic ETEC strains. Oral administration of nanobodies led to significant reduction of bacterial colonization in animals challenged with multiple ETEC strains. Structural analysis revealed novel conserved epitopes as critical structural features for pan-ETEC vaccine design.Two of the lead nanobodies, 2R215 and 1D7, were further engineered as trimer or fused with human IgA Fc-fragments as fusionbodies. Oral administration of the trimers or fusionbodies protected mice from infection at a much lower dose compared to the monomeric format. Importantly, fusionbodies prevented infection as a pre-treatment when administrated 2 hours before ETEC challenge to the animals. Together, our study provides the first proof of concept that oral administration of a single nanobody could confer broad protection against major pathogenic ETEC strains. Technological advances in large-scale manufacturing of biological proteins in plants and microorganisms will make nanobody-based immunotherapy a potent and cost-effective prophylaxis or treatment for ETEC.


1976 ◽  
Vol 81 (2) ◽  
pp. 495-506 ◽  
Author(s):  
A. Radvila ◽  
R. Roost ◽  
H. Bürgi ◽  
H. Kohler ◽  
H. Studer

ABSTRACT Lithium and excess iodide inhibit the release of thyroid hormone from preformed stores. We thus tested the hypothesis that this was due to an inhibition of thyroglobulin breakdown. Rats were pre-treated with propylthiouracil (PTU) for 3 weeks in order to deplete their thyroids of thyroglobulin. While the PTU was continued, lithium chloride (0.25 mEq./100 g weight) or potassium iodide (3 mg per rat) were injected every 12 h for 3 days. Thereafter the thyroglobulin content in thyroid gland homogenates was measured. PTU pre-treatment lowered the thyroglobulin content from 4.21 to 0.22 mg/100 mg gland. Lithium caused a marked re-accumulation of thyroglobulin to 0.60 mg/100 mg within 3 days. While iodide alone had only a borderline effect, it markedly potentiated the action of lithium and a combination of the two drugs increased the thyroglobulin content to 1.04 mg/100 mg. Thyroxine was injected into similarly pre-treated animals to suppress secretion of thyrotrophic hormone. This markedly inhibited the proteolysis of thyroglobulin and 1.3 mg/100 mg gland accumulated after 3 days. Excess iodide, given in addition to thyroxine, decreased the amount of thyroglobulin accumulated to 0.75 mg/100 mg gland. To study whether this could be explained by an inhibitory action of iodide on thyroglobulin biosynthesis, thyroid glands from animals treated with excess iodide were incubated in vitro in the presence of 0.2 mm iodide for 3 h. Iodide decreased the incorporation of radioactive leucine into total thyroidal protein and into thyroglobulin by 25 and 35 % respectively. Iodide did not inhibit protein synthesis in the kidney, liver or muscle tissue. Thus, large doses of iodide selectively inhibit thyroglobulin biosynthesis.


2018 ◽  
Vol 18 (5) ◽  
pp. 321-368 ◽  
Author(s):  
Juan A. Bisceglia ◽  
Maria C. Mollo ◽  
Nadia Gruber ◽  
Liliana R. Orelli

Neglected diseases due to the parasitic protozoa Leishmania and Trypanosoma (kinetoplastids) affect millions of people worldwide, and the lack of suitable treatments has promoted an ongoing drug discovery effort to identify novel nontoxic and cost-effective chemotherapies. Polyamines are ubiquitous small organic molecules that play key roles in kinetoplastid parasites metabolism, redox homeostasis and in the normal progression of cell cycles, which differ from those found in the mammalian host. These features make polyamines attractive in terms of antiparasitic drug development. The present work provides a comprehensive insight on the use of polyamine derivatives and related nitrogen compounds in the chemotherapy of kinetoplastid diseases. The amount of literature on this subject is considerable, and a classification considering drug targets and chemical structures were made. Polyamines, aminoalcohols and basic heterocycles designed to target the relevant parasitic enzyme trypanothione reductase are discussed in the first section, followed by compounds directed to less common targets, like parasite SOD and the aminopurine P2 transporter. Finally, the third section comprises nitrogen compounds structurally derived from antimalaric agents. References on the chemical synthesis of the selected compounds are reported together with their in vivo and/or in vitro IC50 values, and structureactivity relationships within each group are analyzed. Some favourable structural features were identified from the SAR analyses comprising protonable sites, hydrophobic groups and optimum distances between them. The importance of certain pharmacophoric groups or amino acid residues in the bioactivity of polyamine derived compounds is also discussed.


2020 ◽  
Vol 17 (11) ◽  
pp. 1380-1392
Author(s):  
Emine Merve Güngör ◽  
Mehlika Dilek Altıntop ◽  
Belgin Sever ◽  
Gülşen Akalın Çiftçi

Background: Akt is overexpressed or activated in a variety of human cancers, including gliomas, lung, breast, ovarian, gastric and pancreatic carcinomas. Akt inhibition leads to the induction of apoptosis and inhibition of tumor growth and therefore extensive efforts have been devoted to the discovery of potent antitumor drugs targeting Akt. Objectives: The objective of this work was to identify potent anticancer agents targeting Akt. Methods: New hydrazone derivatives were synthesized and investigated for their cytotoxic effects on 5RP7 H-ras oncogene transformed rat embryonic fibroblast and L929 mouse embryonic fibroblast cell lines. Besides, the apoptotic effects of the most active compounds on 5RP7 cell line were evaluated using flow cytometry. Their Akt inhibitory effects were also investigated using a colorimetric assay. In silico docking and Absorption, Distribution, Metabolism and Excretion (ADME) studies were also performed using Schrödinger’s Maestro molecular modeling package. Results and Discussion: Compounds 3a, 3d, 3g and 3j were found to be effective on 5RP7 cells (with IC50 values of <0.97, <0.97, 1.13±0.06 and <0.97 μg/mL, respectively) when compared with cisplatin (IC50= 1.87±0.15 μg/mL). It was determined that these four compounds significantly induced apoptosis in 5RP7 cell line. Among them, N'-benzylidene-2-[(4-(4-methoxyphenyl)pyrimidin- 2-yl)thio]acetohydrazide (3g) significantly inhibited Akt (IC50= 0.5±0.08 μg/mL) when compared with GSK690693 (IC50= 0.6±0.05 μg/mL). Docking studies suggested that compound 3g showed good affinity to the active site of Akt (PDB code: 2JDO). According to in silico ADME studies, the compound also complies with Lipinski's rule of five and Jorgensen's rule of three. Conclusion: Compound 3g stands out as a potential orally bioavailable cytotoxic agent and apoptosis inducer targeting Akt.


2018 ◽  
Vol 18 (2) ◽  
pp. 295-301 ◽  
Author(s):  
Shabnam Farzaneh ◽  
Elnaz Zeinalzadeh ◽  
Bahram Daraei ◽  
Soraya Shahhosseini ◽  
Afshin Zarghi

Background: Due to the astonishing properties of ferrocene and its derivatives, it has a broad application in diverse areas. Numerous ferrocene derivatives demonstrated anti-proliferative activity. Also COX-2, as a key isoenzyme for production of prostaglandins, is frequently overexpressed in various cancers. It is now recognized that COX-2 over expression promotes tumorigenic functions which can be suppressed by COX-2 inhibitors, a phenomenon useful for the preventing of tumor progression. The combination of COX-2 inhibitors with other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Objective: Owing to high anticancer potential of ferrocene derivatives and considerable COX-2 inhibitory and cytotoxicity effects of our previously synthesized chalcones, we decided to incorporate the ferrocenyl moiety into appropriate COX-2 inhibitor chalcone based scaffold, to evaluate COX-2 inhibitory activity as well as anticancer activities. Methods: Chalcones were synthesized via clasien-schmidt condensation of methylsulfonyl aldehyde and acetyl ferrocene. Further different amines with solvent free and ultra sound condition were reacted with chalcones to have different 1-ferrocenyl-3-amino carbonyl compounds. Docking study was carried out with Auto Dock vina software. All the newly-synthesized compounds were evaluated for their cyclooxygenase-2 (COX-2) inhibitory activity using chemiluminescent enzyme assays as well as cytotoxicity activity against MCF-7 and T47D and fibroblast cell lines by MTT assay. Results: In vitro COX-1/COX-2 inhibition studies demonstrated that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.05-0.12 µM range, and COX-2 selectivity indexes (SI) in the 148.3-313.7 range. These results indicated that either potency or selectivity of COX-2 inhibitory activity was affected by the nature and size of the substituents on C-3 of propane-1-one. Also anti-proliferative and toxicity activities of synthesized compounds against breast cancer cell lines MCF-7 and T47D and fibroblast cell lines showed that the synthesized compounds had mild to moderate cytotoxicity against MCT7 and T47D breast cancer cell lines at 10 µM concentration. In vitro COX-1/COX-2 inhibition studies and anticancer activity against MCF-7, identified 1-ferrocenyl-3-(4-methylsulfonylphenyl) propen-1-one as a potent compound (IC50 COX-2 = 0.05 µM, MCF-7: % inhibition (at concentration of 10 µM) = 32.7%), and also 1-ferrocenyl-3- (propan-1-amine)-3-(4-methylsulfonylphenyl) propan-1-one showed the most selectivity on COX-2 inhibition (selectivity index= 313.7). Conclusion: A novel group of ferrocene compounds, possessing a methyl sulfonyl COX-2 pharmacophore were synthesized to investigate the effect of different substituents on selectivity and potency of COX-2 inhibitory activity and their cytotoxicity effects. This study indicates that 1-ferrocenyl-3-amino carbonyl compounds having ferrocene motif and methyl sulfonyl COX-2 pharmacophore is a suitable scaffold to design COX-2 inhibitors and anti-cancer agents.


Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 3023-3034
Author(s):  
Weiyuan Liang ◽  
Dou Wang ◽  
Xiaohui Ren ◽  
Chenchen Ge ◽  
Hanyue Wang ◽  
...  

AbstractTwo-dimensional black phosphorus (BP) has been demonstrated to be promising in photoelectronic devices, electrode materials, and biomedicine owing to its outstanding properties. However, the application of BP has been hindered by harsh preparation conditions, high costs, and easy degradation in ambient condition. Herein, we report a facile and cost-effective strategy for synthesis of orthorhombic phase BP and a kind of BP-reduced graphene oxide (BP/rGO) hybrids in which BP remains stable for more than 4 weeks ascribed to the formation of phosphorus-carbon covalent bonds between BP and rGO as well as the protection effect of the unique wrinkle morphology of rGO nanosheets. Surface modification BP/rGO hybrids (PEGylated BP/rGO) exhibit excellent photothermal performance with photothermal conversion efficiency as high as 57.79% at 808 nm. The BP/rGO hybrids exhibit enhanced antitumor effects both in vitro and in vivo, showing promising perspectives in biomedicine.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 736
Author(s):  
Kamila Malecka ◽  
Edyta Mikuła ◽  
Elena E. Ferapontova

Improved outcomes for many types of cancer achieved during recent years is due, among other factors, to the earlier detection of tumours and the greater availability of screening tests. With this, non-invasive, fast and accurate diagnostic devices for cancer diagnosis strongly improve the quality of healthcare by delivering screening results in the most cost-effective and safe way. Biosensors for cancer diagnostics exploiting aptamers offer several important advantages over traditional antibodies-based assays, such as the in-vitro aptamer production, their inexpensive and easy chemical synthesis and modification, and excellent thermal stability. On the other hand, electrochemical biosensing approaches allow sensitive, accurate and inexpensive way of sensing, due to the rapid detection with lower costs, smaller equipment size and lower power requirements. This review presents an up-to-date assessment of the recent design strategies and analytical performance of the electrochemical aptamer-based biosensors for cancer diagnosis and their future perspectives in cancer diagnostics.


Sign in / Sign up

Export Citation Format

Share Document