scholarly journals Perturbation of transmembrane 6 superfamily member 2 expression alters lipid metabolism in a human liver cell line

2021 ◽  
Author(s):  
Asmita Pant ◽  
Yue Chen ◽  
Annapurna Kuppa ◽  
Xiaomeng Du ◽  
Brian Halligan ◽  
...  

Background: Nonalcoholic fatty liver disease (NAFLD) is caused by accumulation of excess lipids in hepatocytes. Genome wide association studies have identified strong association of NAFLD with non-synonymous E167K amino acid mutation in transmembrane 6 superfamily member 2 (TM6SF2) protein. The E167K mutation affects TM6SF2 stability and its carriers display increased hepatic lipids levels and lower serum triglycerides. While similar phenotype is evident in mice with TM6SF2 knockdown, effects of TM6SF2 on hepatic lipid metabolism is not completely understood. Methods: Here, we overexpressed wild-type or E167K variant of TM6SF2 or knocked down TM6SF2 expression in lipid-treated Huh-7 cells and used biochemical assays, untargeted lipidomic analysis, RNAseq transcriptome analysis and high-throughput fluorescent imaging to determine changes in lipid metabolism. Results: Both knockdown and E167K overexpression increased acylglyceride levels which was decreased by wild-type TM6SF2 overexpression. Further, mean intensity of individual lipid droplets was increased by E167K overexpression and knockdown while wild-type TM6SF2 had no effects. We also observed lipid chain remodeling for acylglycerides by TM6SF2 knockdown leading to a relative increase in species with shorter and more saturated side chains. RNA sequencing revealed differential expression of several lipid metabolizing genes, including genes belonging to AKR1 family and lipases, primarily in cells with TM6SF2 knockdown. Conclusion: Taken together, our data shows that overexpression of TM6SF2 gene or its loss-of-function changes hepatic lipid species composition and expression of lipid metabolizing genes. Further, overexpression of E167K variant and TM6SF2 knockdown similarly increased hepatic lipid accumulation and lipid droplets profile further confirming a loss-of-function effect for variant.


2021 ◽  
Vol 22 (18) ◽  
pp. 9758
Author(s):  
Asmita Pant ◽  
Yue Chen ◽  
Annapurna Kuppa ◽  
Xiaomeng Du ◽  
Brian D. Halligan ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is caused by excess lipid accumulation in hepatocytes. Genome-wide association studies have identified a strong association of NAFLD with non-synonymous E167K amino acid mutation in the transmembrane 6 superfamily member 2 (TM6SF2) protein. The E167K mutation reduces TM6SF2 stability, and its carriers display increased hepatic lipids and lower serum triglycerides. However, the effects of TM6SF2 on hepatic lipid metabolism are not completely understood. We overexpressed wild-type or E167K variant of TM6SF2 or knocked down TM6SF2 expression in lipid-treated Huh-7 cells and used untargeted lipidomic analysis, RNAseq transcriptome analysis, and fluorescent imaging to determine changes in hepatic lipid metabolism. Both TM6SF2 knockdown and E167K overexpression increased hepatic lipid accumulation, while wild-type overexpression decreased acylglyceride levels. We also observed lipid chain remodeling for acylglycerides by TM6SF2 knockdown, leading to a relative increase in species with shorter, more saturated side chains. RNA-sequencing revealed differential expression of several lipid metabolizing genes, including genes belonging to AKR1 family and lipases, primarily in cells with TM6SF2 knockdown. Taken together, our data show that overexpression of TM6SF2 gene or its loss-of-function changes hepatic lipid species composition and expression of lipid metabolizing genes. Additionally, our data further confirms a loss-of-function effect for the E167K variant.



2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Xiao Wang ◽  
Avanthi Raghavan ◽  
A. Christina Vourakis ◽  
Alexandra E Sperry ◽  
Wenjun Li ◽  
...  

Human genetics studies have demonstrated a strong link between ANGPTL3 , which encodes lipoprotein lipase inhibitor Angiopoietin-like 3, and blood lipid phenotypes. Rare nonsense ANGPTL3 mutations were identified in patients with familial combined hypolipidemia, while common variants at the ANGPTL3 locus have been found by genome-wide association studies (GWASs) to associate with lower triglycerides (TGs) and low-density lipoprotein cholesterol. In light of the seemingly favorable clinical consequences of ANGPTL3 deficiency, we established an experimental framework to identify (1) causal common variants that regulate ANGPTL3 expression and (2) rare missense mutations that disrupt ANGPTL3 function. Using massively parallel reporter assays, we profiled the regulatory activity of all the common variants linked ( r 2 ≥ 0.5) to the lead GWAS SNP in the ANGPTL3 locus and found that rs10889356 demonstrated significant allele-specific enhancer activity. To validate this finding, we used CRISPR-Cas9 to alter the SNP in a human pluripotent stem cell line. When differentiated into hepatocytes, altered cells displayed a 67% increase in ANGPTL3 expression ( n = 4 wild-type and 4 mutant clones, P = 0.007). CRISPR interference using each of three guide RNAs targeting the SNP in HepG2 cells also substantially increased ANGPTL3 expression. These findings support rs10889356- ANGPTL3 as a causal SNP-gene set. Next, we examined the coding regions of ANGPTL3 in 20,000 sequenced individuals and sought to experimentally define rare missense variants using a mouse model. We used CRISPR-Cas9 to generate Angptl3 knockout mice, which exhibited decreased TG (61%, P < 0.001) and decreased cholesterol (31%, P < 0.002). We reconstituted the knockout mice to normal expression levels with adenoviruses expressing either wild-type ANGPTL3 or missense variant ANGPTL3 . So far we have assessed 28 rare missense variants computationally predicted to be deleterious, of which only 10—D42N, K58E, S117P, P264S, Q286H, L315S, L360Q, T383I, T383S, and Y417C—were validated as loss-of-function (conferring <25% of wild-type activity as assessed by changes in both TG and cholesterol levels), underscoring the need for functional characterization of variants of uncertain significance.



2015 ◽  
Vol 43 (5) ◽  
pp. 1079-1084 ◽  
Author(s):  
Robert C. Bauer ◽  
Batuhan O. Yenilmez ◽  
Daniel J. Rader

The protein tribbles-1, encoded by the gene TRIB1, is increasingly recognized as a major regulator of multiple cellular and physiological processes in humans. Recent human genetic studies, as well as molecular biological approaches, have implicated this intriguing protein in the aetiology of multiple human diseases, including myeloid leukaemia, Crohn's disease, non-alcoholic fatty liver disease (NAFLD), dyslipidaemia and coronary artery disease (CAD). Genome-wide association studies (GWAS) have repeatedly identified variants at the genomic TRIB1 locus as being significantly associated with multiple plasma lipid traits and cardiovascular disease (CVD) in humans. The involvement of TRIB1 in hepatic lipid metabolism has been validated through viral-mediated hepatic overexpression of the gene in mice; increasing levels of TRIB1 decreased plasma lipids in a dose-dependent manner. Additional studies have implicated TRIB1 in the regulation of hepatic lipogenesis and NAFLD. The exact mechanisms of TRIB1 regulation of both plasma lipids and hepatic lipogenesis remain undetermined, although multiple signalling pathways and transcription factors have been implicated in tribbles-1 function. Recent reports have been aimed at developing TRIB1-based lipid therapeutics. In summary, tribbles-1 is an important modulator of human energy metabolism and metabolic syndromes and worthy of future studies aimed at investigating its potential as a therapeutic target.



2021 ◽  
Author(s):  
Monica Emili Garcia-Segura ◽  
Brenan R. Durainayagam ◽  
Sonia Liggi ◽  
Goncalo Graca ◽  
Beatriz Jimenez ◽  
...  

Alzheimers Disease (AD) is a highly prevalent neurodegenerative disorder. Despite increasing evidence of important metabolic dysregulation in AD, the underlying metabolic changes that may impact amyloid plaque formation are not understood, particularly for late onset AD. This study analyzed genome-wide association studies (GWAS), transcriptomics and proteomics data obtained from several data repositories to obtain differentially expressed (DE) multi-omics elements in mouse models of AD. We characterized the metabolic modulation in these datasets using gene ontology, and transcription factor, pathway and cell-type enrichment analysis. A predicted lipid signature was extracted from genome-scale metabolic networks (GSMN) and subsequently validated in a lipidomic dataset derived from cortical tissue of ABCA7-null mice, a mouse model of one of the genes associated with late onset AD. Moreover, a metabolome-wide association study (MWAS) was performed to further characterize the association between dysregulated lipid metabolism in human blood serum and AD. We found 203 DE transcripts, 164 DE proteins and 58 DE GWAS-derived mouse orthologs associated with significantly enriched metabolic biological processes. Lipid and bioenergetics metabolic pathways were significantly over-represented across the AD multi-omics datasets. Microglia and astrocytes were significantly enriched in the lipid-predominant AD-metabolic transcriptome. We also extracted a predicted lipid signature that was validated and robustly modelled class separation in the ABCA7 mice cortical lipidome, with 11 of these lipid species exhibiting statistically significant modulations. MWAS revealed 298 AD single nucleotide polymorphisms (SNP)-metabolite associations, of which 70% corresponded to lipid classes. These results support the importance of lipid metabolism dysregulation in AD and highlight the suitability of mapping AD multi-omics data into GSMNs to identify metabolic alterations.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lucas D. Ward ◽  
Ho-Chou Tu ◽  
Chelsea B. Quenneville ◽  
Shira Tsour ◽  
Alexander O. Flynn-Carroll ◽  
...  

AbstractUnderstanding mechanisms of hepatocellular damage may lead to new treatments for liver disease, and genome-wide association studies (GWAS) of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum activities have proven useful for investigating liver biology. Here we report 100 loci associating with both enzymes, using GWAS across 411,048 subjects in the UK Biobank. The rare missense variant SLC30A10 Thr95Ile (rs188273166) associates with the largest elevation of both enzymes, and this association replicates in the DiscovEHR study. SLC30A10 excretes manganese from the liver to the bile duct, and rare homozygous loss of function causes the syndrome hypermanganesemia with dystonia-1 (HMNDYT1) which involves cirrhosis. Consistent with hematological symptoms of hypermanganesemia, SLC30A10 Thr95Ile carriers have increased hematocrit and risk of iron deficiency anemia. Carriers also have increased risk of extrahepatic bile duct cancer. These results suggest that genetic variation in SLC30A10 adversely affects more individuals than patients with diagnosed HMNDYT1.



2021 ◽  
pp. 1-10
Author(s):  
Sophie E. Legge ◽  
Marcos L. Santoro ◽  
Sathish Periyasamy ◽  
Adeniran Okewole ◽  
Arsalan Arsalan ◽  
...  

Abstract Schizophrenia is a severe psychiatric disorder with high heritability. Consortia efforts and technological advancements have led to a substantial increase in knowledge of the genetic architecture of schizophrenia over the past decade. In this article, we provide an overview of the current understanding of the genetics of schizophrenia, outline remaining challenges, and summarise future directions of research. World-wide collaborations have resulted in genome-wide association studies (GWAS) in over 56 000 schizophrenia cases and 78 000 controls, which identified 176 distinct genetic loci. The latest GWAS from the Psychiatric Genetics Consortium, available as a pre-print, indicates that 270 distinct common genetic loci have now been associated with schizophrenia. Polygenic risk scores can currently explain around 7.7% of the variance in schizophrenia case-control status. Rare variant studies have implicated eight rare copy-number variants, and an increased burden of loss-of-function variants in SETD1A, as increasing the risk of schizophrenia. The latest exome sequencing study, available as a pre-print, implicates a burden of rare coding variants in a further nine genes. Gene-set analyses have demonstrated significant enrichment of both common and rare genetic variants associated with schizophrenia in synaptic pathways. To address current challenges, future genetic studies of schizophrenia need increased sample sizes from more diverse populations. Continued expansion of international collaboration will likely identify new genetic regions, improve fine-mapping to identify causal variants, and increase our understanding of the biology and mechanisms of schizophrenia.



Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 934
Author(s):  
Donato Gemmati ◽  
Giovanna Longo ◽  
Eugenia Franchini ◽  
Juliana Araujo Silva ◽  
Ines Gallo ◽  
...  

Inherited thrombophilia (e.g., venous thromboembolism, VTE) is due to rare loss-of-function mutations in anticoagulant factors genes (i.e., SERPINC1, PROC, PROS1), common gain-of-function mutations in procoagulant factors genes (i.e., F5, F2), and acquired risk conditions. Genome Wide Association Studies (GWAS) recently recognized several genes associated with VTE though gene defects may unpredictably remain asymptomatic, so calculating the individual genetic predisposition is a challenging task. We investigated a large family with severe, recurrent, early-onset VTE in which two sisters experienced VTE during pregnancies characterized by a perinatal in-utero thrombosis in the newborn and a life-saving pregnancy-interruption because of massive VTE, respectively. A nonsense mutation (CGA > TGA) generating a premature stop-codon (c.1171C>T; p.R391*) in the exon 6 of SERPINC1 gene (1q25.1) causing Antithrombin (AT) deficiency and the common missense mutation (c.1691G>A; p.R506Q) in the exon 10 of F5 gene (1q24.2) (i.e., FV Leiden; rs6025) were coinherited in all the symptomatic members investigated suspecting a cis-segregation further confirmed by STR-linkage-analyses [i.e., SERPINC1 IVS5 (ATT)5–18, F5 IVS2 (AT)6–33 and F5 IVS11 (GT)12–16] and SERPINC1 intragenic variants (i.e., rs5878 and rs677). A multilocus investigation of blood-coagulation balance genes detected the coexistence of FV Leiden (rs6025) in trans with FV HR2-haplotype (p.H1299R; rs1800595) in the aborted fetus, and F11 rs2289252, F12 rs1801020, F13A1 rs5985, and KNG1 rs710446 in the newborn and other members. Common selected gene variants may strongly synergize with less common mutations tuning potential life-threatening conditions when combined with rare severest mutations. Merging classic and newly GWAS-identified gene markers in at risk families is mandatory for VTE risk estimation in the clinical practice, avoiding partial risk score evaluation in unrecognized at risk patients.



2021 ◽  
Vol 15 ◽  
Author(s):  
Bin Li ◽  
Guihu Zhao ◽  
Qiao Zhou ◽  
Yali Xie ◽  
Zheng Wang ◽  
...  

Parkinson’s disease (PD) is a complex neurodegenerative disorder with a strong genetic component. A growing number of variants and genes have been reported to be associated with PD; however, there is no database that integrate different type of genetic data, and support analyzing of PD-associated genes (PAGs). By systematic review and curation of multiple lines of public studies, we integrate multiple layers of genetic data (rare variants and copy-number variants identified from patients with PD, associated variants identified from genome-wide association studies, differentially expressed genes, and differential DNA methylation genes) and age at onset in PD. We integrated five layers of genetic data (8302 terms) with different levels of evidences from more than 3,000 studies and prioritized 124 PAGs with strong or suggestive evidences. These PAGs were identified to be significantly interacted with each other and formed an interconnected functional network enriched in several functional pathways involved in PD, suggesting these genes may contribute to the pathogenesis of PD. Furthermore, we identified 10 genes were associated with a juvenile-onset (age ≤ 30 years), 11 genes were associated with an early-onset (age of 30–50 years), whereas another 10 genes were associated with a late-onset (age &gt; 50 years). Notably, the AAOs of patients with loss of function variants in five genes were significantly lower than that of patients with deleterious missense variants, while patients with VPS13C (P = 0.01) was opposite. Finally, we developed an online database named Gene4PD (http://genemed.tech/gene4pd) which integrated published genetic data in PD, the PAGs, and 63 popular genomic data sources, as well as an online pipeline for prioritize risk variants in PD. In conclusion, Gene4PD provides researchers and clinicians comprehensive genetic knowledge and analytic platform for PD, and would also improve the understanding of pathogenesis in PD.



Blood ◽  
2021 ◽  
Author(s):  
Gaia Zirka ◽  
Philippe Robert ◽  
Julia Tilburg ◽  
Victoria Tishkova ◽  
Chrissta X Maracle ◽  
...  

Genome wide association studies linked expression of the human neutrophil antigen 3b (HNA-3b) epitope on the Slc44a2 protein with a 30% decreased risk of venous thrombosis (VT) in humans. Slc44a2 is a ubiquitous transmembrane protein identified as a receptor for Von Willebrand factor (VWF). To explain the link between Slc44a2 and VT we wanted to determine how Slc44a2 expressing either HNA-3a or HNA-3b on neutrophils could modulate their adhesion and activation on VWF under flow. Transfected HEK293T cells or neutrophils homozygous for the HNA-3a- or the HNA-3b-coding allele were purified from healthy donors and perfused in flow chambers coated with VWF at venous shear rates (100s-1). HNA-3a expression was required for Slc44a2-mediated neutrophil adhesion to VWF at 100s-1. This adhesion could occur independently of β2 integrin and was enhanced when neutrophils are preactivated with lipopolysaccharide (LPS). Moreover, specific shear conditions with high neutrophil concentration could act as a "second hit", inducing the formation of neutrophil extracellular traps. Neutrophil mobilization was also measured by intravital microscopy in venules from SLC44A2-knockout and wild-type mice after histamine-induced endothelial degranulation. Mice lacking Slc44a2 showed a massive reduction in neutrophil recruitment in inflamed mesenteric venules. Our results show that Slc44a2/HNA-3a is important for the adhesion and activation of neutrophils in veins under inflammation and when submitted to specific shears. Neutrophils expressing Slc44a2/HNA-3b not being associated with these observations, these results could thus explain the association between HNA-3b and a reduced risk for VT in humans.



Author(s):  
Rebekah J Nicholson ◽  
Annelise M Poss ◽  
J Alan Maschek ◽  
James E Cox ◽  
Paul N Hopkins ◽  
...  

Abstract Context Genome-wide association studies have identified associations between a common single nucleotide polymorphism (SNP, rs267738) in CERS2 – a gene that encodes a (dihydro)ceramide synthase involved in the biosynthesis of very-long chain sphingolipids (e.g. C20-C26) – and indices of metabolic dysfunction (e.g. impaired glucose homeostasis). However, the biological consequences of this mutation on enzyme activity and its causal roles in metabolic disease are unresolved. Objective The studies described herein aimed to characterize the effects of rs267738 on CERS2 enzyme activity, sphingolipid profiles, and metabolic outcomes. Design We performed in-depth lipidomic and metabolic characterization of a novel CRISPR knock-in mouse modeling the rs267738 variant. In parallel, we conducted mass spectrometry-based, targeted lipidomics on 567 serum samples collected through the Utah Coronary Artery Disease study, which included 185 patients harboring one (n = 163) or both (n = 22) rs267738 alleles. Results In-silico analysis of the amino acid substitution within CERS2 caused by the rs267738 mutation suggested that rs267738 is deleterious for enzyme function. Homozygous knock-in mice had reduced liver CERS2 activity and enhanced diet-induced glucose intolerance and hepatic steatosis. However, human serum sphingolipids and a ceramide-based CERT1 risk score of cardiovascular disease were not significantly affected by rs267738 allele count. Conclusions The rs267738 SNP leads to a partial loss-of-function of CERS2, which worsened metabolic parameters in knock-in mice. However, rs267738 was insufficient to effect changes in serum sphingolipid profiles in subjects from the Utah Coronary Artery Disease Study.



Sign in / Sign up

Export Citation Format

Share Document